Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.05304
Cited By
Cloud-based Federated Boosting for Mobile Crowdsensing
9 May 2020
Zhuzhu Wang
Yilong Yang
Yang Liu
Ximeng Liu
B. Gupta
Jianfeng Ma
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Cloud-based Federated Boosting for Mobile Crowdsensing"
6 / 6 papers shown
Title
Distributed and Deep Vertical Federated Learning with Big Data
Ji Liu
Xuehai Zhou
L. Mo
Shilei Ji
Yuan Liao
Zhu Li
Qinhua Gu
Dejing Dou
FedML
79
18
0
08 Mar 2023
Scalable Multi-Party Privacy-Preserving Gradient Tree Boosting over Vertically Partitioned Dataset with Outsourced Computations
Kennedy Edemacu
Beakcheol Jang
Jong Wook Kim
26
1
0
07 Feb 2022
An Efficient Learning Framework For Federated XGBoost Using Secret Sharing And Distributed Optimization
Lunchen Xie
Jiaqi Liu
Songtao Lu
Tsung-Hui Chang
Qingjiang Shi
FedML
64
38
0
12 May 2021
SoK: Privacy-Preserving Collaborative Tree-based Model Learning
Sylvain Chatel
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Jean-Pierre Hubaux
73
15
0
16 Mar 2021
Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning
Yuya Jeremy Ong
Yi Zhou
Nathalie Baracaldo
Heiko Ludwig
FedML
83
23
0
11 Dec 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
269
578
0
27 Jul 2020
1