Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.04305
Cited By
Measuring the Algorithmic Efficiency of Neural Networks
8 May 2020
Danny Hernandez
Tom B. Brown
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Measuring the Algorithmic Efficiency of Neural Networks"
16 / 16 papers shown
Title
The Graph's Apprentice: Teaching an LLM Low Level Knowledge for Circuit Quality Estimation
Reza Moravej
Saurabh Bodhe
Zhanguang Zhang
Didier Chetelat
Dimitrios Tsaras
Yingxue Zhang
Hui-Ling Zhen
Jianye Hao
M. Yuan
57
1
0
17 Feb 2025
Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends
Ian Schneider
Hui Xu
Stephan Benecke
David Patterson
Keguo Huang
Parthasarathy Ranganathan
Cooper Elsworth
70
2
0
01 Feb 2025
AI capabilities can be significantly improved without expensive retraining
Tom Davidson
Jean-Stanislas Denain
Pablo Villalobos
Guillem Bas
OffRL
VLM
24
26
0
12 Dec 2023
Efficiency is Not Enough: A Critical Perspective of Environmentally Sustainable AI
Dustin Wright
Christian Igel
Gabrielle Samuel
Raghavendra Selvan
32
15
0
05 Sep 2023
Criticality versus uniformity in deep neural networks
A. Bukva
Jurriaan de Gier
Kevin T. Grosvenor
R. Jefferson
K. Schalm
Eliot Schwander
31
3
0
10 Apr 2023
Bifrost: End-to-End Evaluation and Optimization of Reconfigurable DNN Accelerators
Axel Stjerngren
Perry Gibson
José Cano
28
4
0
26 Apr 2022
SlimFL: Federated Learning with Superposition Coding over Slimmable Neural Networks
Won Joon Yun
Yunseok Kwak
Hankyul Baek
Soyi Jung
Mingyue Ji
M. Bennis
Jihong Park
Joongheon Kim
18
16
0
26 Mar 2022
Joint Superposition Coding and Training for Federated Learning over Multi-Width Neural Networks
Hankyul Baek
Won Joon Yun
Yunseok Kwak
Soyi Jung
Mingyue Ji
M. Bennis
Jihong Park
Joongheon Kim
FedML
74
21
0
05 Dec 2021
Automated Essay Scoring Using Transformer Models
Sabrina Ludwig
Christian W. F. Mayer
Christopher Hansen
Kerstin Eilers
Steffen Brandt
19
38
0
13 Oct 2021
SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Accelerators for Edge Inference
Jude Haris
Perry Gibson
José Cano
Nicolas Bohm Agostini
David Kaeli
41
19
0
01 Oct 2021
Compute and Energy Consumption Trends in Deep Learning Inference
Radosvet Desislavov
Fernando Martínez-Plumed
José Hernández-Orallo
35
113
0
12 Sep 2021
Greenformers: Improving Computation and Memory Efficiency in Transformer Models via Low-Rank Approximation
Samuel Cahyawijaya
26
12
0
24 Aug 2021
Accelerating Federated Learning with a Global Biased Optimiser
Jed Mills
Jia Hu
Geyong Min
Rui Jin
Siwei Zheng
Jin Wang
FedML
AI4CE
34
9
0
20 Aug 2021
Efficient and Generic 1D Dilated Convolution Layer for Deep Learning
Narendra Chaudhary
Sanchit Misra
Dhiraj D. Kalamkar
A. Heinecke
E. Georganas
Barukh Ziv
Menachem Adelman
Bharat Kaul
26
9
0
16 Apr 2021
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,959
0
20 Apr 2018
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,220
0
16 Nov 2016
1