ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.04091
  4. Cited By
TIRAMISU: A Polyhedral Compiler for Dense and Sparse Deep Learning

TIRAMISU: A Polyhedral Compiler for Dense and Sparse Deep Learning

7 May 2020
Riyadh Baghdadi
Abdelkader Nadir Debbagh
K. Abdous
Fatima-Zohra Benhamida
Alex Renda
Jonathan Frankle
Michael Carbin
Saman P. Amarasinghe
ArXivPDFHTML

Papers citing "TIRAMISU: A Polyhedral Compiler for Dense and Sparse Deep Learning"

5 / 5 papers shown
Title
LOOPer: A Learned Automatic Code Optimizer For Polyhedral Compilers
LOOPer: A Learned Automatic Code Optimizer For Polyhedral Compilers
Massinissa Merouani
Khaled Afif Boudaoud
Iheb Nassim Aouadj
Nassim Tchoulak
Islam Kara Bernou
Hamza Benyamina
F. B. Tayeb
K. Benatchba
Hugh Leather
Riyadh Baghdadi
48
2
0
18 Mar 2024
A Deep Learning Based Cost Model for Automatic Code Optimization
A Deep Learning Based Cost Model for Automatic Code Optimization
Riyadh Baghdadi
Massinissa Merouani
Mohamed-Hicham Leghettas
K. Abdous
T. Arbaoui
K. Benatchba
Saman P. Amarasinghe
35
68
0
11 Apr 2021
SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning
  Inference
SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference
Ziheng Wang
40
67
0
26 Aug 2020
Data Movement Is All You Need: A Case Study on Optimizing Transformers
Data Movement Is All You Need: A Case Study on Optimizing Transformers
A. Ivanov
Nikoli Dryden
Tal Ben-Nun
Shigang Li
Torsten Hoefler
36
131
0
30 Jun 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
235
383
0
05 Mar 2020
1