ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.03185
  4. Cited By
Determinantal Point Processes in Randomized Numerical Linear Algebra

Determinantal Point Processes in Randomized Numerical Linear Algebra

7 May 2020
Michal Derezinski
Michael W. Mahoney
ArXivPDFHTML

Papers citing "Determinantal Point Processes in Randomized Numerical Linear Algebra"

18 / 18 papers shown
Title
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
A Family of Distributions of Random Subsets for Controlling Positive and Negative Dependence
Sangwoo Shin
H. Hino
26
0
0
02 Aug 2024
Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Surrogate-based Autotuning for Randomized Sketching Algorithms in Regression Problems
Younghyun Cho
James Demmel
Michal Derezinski
Haoyun Li
Hengrui Luo
Michael W. Mahoney
Riley Murray
32
5
0
30 Aug 2023
Sharp Analysis of Sketch-and-Project Methods via a Connection to
  Randomized Singular Value Decomposition
Sharp Analysis of Sketch-and-Project Methods via a Connection to Randomized Singular Value Decomposition
Michal Derezinski
E. Rebrova
27
16
0
20 Aug 2022
Neurotoxin: Durable Backdoors in Federated Learning
Neurotoxin: Durable Backdoors in Federated Learning
Zhengming Zhang
Ashwinee Panda
Linyue Song
Yaoqing Yang
Michael W. Mahoney
Joseph E. Gonzalez
Kannan Ramchandran
Prateek Mittal
FedML
27
130
0
12 Jun 2022
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches
Michal Derezinski
49
5
0
06 Jun 2022
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point
  Processes via Average-Case Entropic Independence
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
Nima Anari
Yang P. Liu
T. Vuong
31
15
0
06 Apr 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zhilin Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
26
14
0
24 Feb 2022
Determinantal point processes based on orthogonal polynomials for
  sampling minibatches in SGD
Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD
Rémi Bardenet
Subhro Ghosh
Meixia Lin
6
6
0
11 Dec 2021
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
  Update
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
37
26
0
15 Jul 2021
L1 Regression with Lewis Weights Subsampling
L1 Regression with Lewis Weights Subsampling
Aditya Parulekar
Advait Parulekar
Eric Price
22
19
0
19 May 2021
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional
  Optimization: Sharp Analysis and Lower Bounds
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
Jonathan Lacotte
Mert Pilanci
20
11
0
13 Dec 2020
Sparse sketches with small inversion bias
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Yan Sun
Michael W. Mahoney
23
21
0
21 Nov 2020
Testing Determinantal Point Processes
Testing Determinantal Point Processes
Khashayar Gatmiry
Maryam Aliakbarpour
Stefanie Jegelka
29
1
0
09 Aug 2020
Sampling from a $k$-DPP without looking at all items
Sampling from a kkk-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
32
22
0
30 Jun 2020
Precise expressions for random projections: Low-rank approximation and
  randomized Newton
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
32
23
0
18 Jun 2020
Exact expressions for double descent and implicit regularization via
  surrogate random design
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
21
77
0
10 Dec 2019
Reverse iterative volume sampling for linear regression
Reverse iterative volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
49
43
0
06 Jun 2018
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
162
1,123
0
25 Jul 2012
1