Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.02328
Cited By
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
5 May 2020
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models"
10 / 10 papers shown
Title
A Spatio-Temporal Neural Network Forecasting Approach for Emulation of Firefront Models
Andrew Bolt
C. Huston
Petra Kuhnert
J. Dabrowski
J. Hilton
Conrad Sanderson
AI4TS
26
11
0
17 Jun 2022
Self-learning Emulators and Eigenvector Continuation
Avik Sarkar
Dean Lee
14
17
0
28 Jul 2021
Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers
A. Chattopadhyay
M. Mustafa
P. Hassanzadeh
Eviatar Bach
K. Kashinath
AI4CE
16
25
0
16 Mar 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
136
424
0
10 Mar 2020
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
341
11,684
0
09 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,684
0
28 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Sparse/Robust Estimation and Kalman Smoothing with Nonsmooth Log-Concave Densities: Modeling, Computation, and Theory
Aleksandr Aravkin
J. Burke
G. Pillonetto
84
64
0
19 Jan 2013
1