ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02291
  4. Cited By
NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results

NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results

5 May 2020
Dario Fuoli
Zhiwu Huang
Martin Danelljan
Radu Timofte
Hua Wang
Longcun Jin
Dewei Su
Jing Liu
Jaehoon Lee
Michal Kudelski
Lukasz Bala
Dmitry Hrybov
Marcin Mo.zejko
Muchen Li
Siyao Li
Bo Pang
Cewu Lu
Chao Li
Dongliang He
Fu Li
Shilei Wen
ArXivPDFHTML

Papers citing "NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results"

5 / 5 papers shown
Title
Boosting the Performance of Video Compression Artifact Reduction with
  Reference Frame Proposals and Frequency Domain Information
Boosting the Performance of Video Compression Artifact Reduction with Reference Frame Proposals and Frequency Domain Information
Yi Xu
Minyi Zhao
Jing Liu
Xinjian Zhang
Longwen Gao
Shuigeng Zhou
Huyang Sun
21
19
0
31 May 2021
NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
Boaz Arad
Radu Timofte
Ohad Ben-Shahar
Yi-Tun Lin
G. Finlayson
Shai Givati
Mohamed H. Sedky
51
122
0
07 May 2020
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and
  Results
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Andreas Lugmayr
Martin Danelljan
Radu Timofte
Namhyuk Ahn
Dongwoon Bai
...
Tongtong Zhao
Yuanbo Zhou
Haijie Zhuo
Ziyao Zong
Xueyi Zou
SupR
82
170
0
05 May 2020
NTIRE 2020 Challenge on Image and Video Deblurring
NTIRE 2020 Challenge on Image and Video Deblurring
Seungjun Nah
Sanghyun Son
Radu Timofte
Kyoung Mu Lee
64
32
0
04 May 2020
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,175
0
16 Sep 2016
1