ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.02205
  4. Cited By
When Machine Unlearning Jeopardizes Privacy

When Machine Unlearning Jeopardizes Privacy

5 May 2020
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
    MIACV
ArXivPDFHTML

Papers citing "When Machine Unlearning Jeopardizes Privacy"

48 / 48 papers shown
Title
Semantic Aware Linear Transfer by Recycling Pre-trained Language Models for Cross-lingual Transfer
Semantic Aware Linear Transfer by Recycling Pre-trained Language Models for Cross-lingual Transfer
Seungyoon Lee
Seongtae Hong
Hyeonseok Moon
Heuiseok Lim
KELM
27
0
0
16 May 2025
SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic Communications
SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic Communications
Weiqi Wang
Zhiyi Tian
Chenhan Zhang
Shui Yu
MU
78
1
0
27 Feb 2025
CRFU: Compressive Representation Forgetting Against Privacy Leakage on Machine Unlearning
Weiqi Wang
Chenhan Zhang
Zhiyi Tian
Shushu Liu
Shui Yu
MU
47
0
0
27 Feb 2025
Privacy Ripple Effects from Adding or Removing Personal Information in Language Model Training
Privacy Ripple Effects from Adding or Removing Personal Information in Language Model Training
Jaydeep Borkar
Matthew Jagielski
Katherine Lee
Niloofar Mireshghallah
David A. Smith
Christopher A. Choquette-Choo
PILM
83
1
0
24 Feb 2025
Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models
Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models
Vinith Suriyakumar
Rohan Alur
Ayush Sekhari
Manish Raghavan
Ashia Wilson
55
2
0
10 Oct 2024
Alternate Preference Optimization for Unlearning Factual Knowledge in
  Large Language Models
Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models
Anmol Mekala
Vineeth Dorna
Shreya Dubey
Abhishek Lalwani
David Koleczek
Mukund Rungta
Sadid Hasan
Elita Lobo
KELM
MU
38
2
0
20 Sep 2024
RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
Zhuan Shi
Jing Yan
Xiaoli Tang
Lingjuan Lyu
Boi Faltings
34
1
0
29 Aug 2024
Towards Certified Unlearning for Deep Neural Networks
Towards Certified Unlearning for Deep Neural Networks
Binchi Zhang
Yushun Dong
Tianhao Wang
Wenlin Yao
MU
64
7
0
01 Aug 2024
Machine Unlearning Fails to Remove Data Poisoning Attacks
Machine Unlearning Fails to Remove Data Poisoning Attacks
Martin Pawelczyk
Jimmy Z. Di
Yiwei Lu
Gautam Kamath
Ayush Sekhari
Seth Neel
AAML
MU
60
8
0
25 Jun 2024
Label Smoothing Improves Machine Unlearning
Label Smoothing Improves Machine Unlearning
Zonglin Di
Zhaowei Zhu
Jinghan Jia
Jiancheng Liu
Zafar Takhirov
Bo Jiang
Yuanshun Yao
Sijia Liu
Yang Liu
37
2
0
11 Jun 2024
Adversarial Machine Unlearning
Adversarial Machine Unlearning
Zonglin Di
Sixie Yu
Yevgeniy Vorobeychik
Yang Liu
49
2
0
11 Jun 2024
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
A Survey on Machine Unlearning: Techniques and New Emerged Privacy Risks
Hengzhu Liu
Ping Xiong
Tianqing Zhu
Philip S. Yu
35
6
0
10 Jun 2024
Privacy-Preserving Debiasing using Data Augmentation and Machine
  Unlearning
Privacy-Preserving Debiasing using Data Augmentation and Machine Unlearning
Zhixin Pan
Emma Andrews
Laura Chang
Prabhat Mishra
MU
40
1
0
19 Apr 2024
Privacy-Preserving Federated Unlearning with Certified Client Removal
Privacy-Preserving Federated Unlearning with Certified Client Removal
Ziyao Liu
Huanyi Ye
Yu Jiang
Jiyuan Shen
Jiale Guo
Ivan Tjuawinata
Kwok-Yan Lam
MU
35
5
0
15 Apr 2024
Threats, Attacks, and Defenses in Machine Unlearning: A Survey
Threats, Attacks, and Defenses in Machine Unlearning: A Survey
Ziyao Liu
Huanyi Ye
Chen Chen
Yongsen Zheng
K. Lam
AAML
MU
35
28
0
20 Mar 2024
Efficient Knowledge Deletion from Trained Models through Layer-wise
  Partial Machine Unlearning
Efficient Knowledge Deletion from Trained Models through Layer-wise Partial Machine Unlearning
Vinay Chakravarthi Gogineni
E. Nadimi
MU
31
1
0
12 Mar 2024
Chameleon: a Heterogeneous and Disaggregated Accelerator System for Retrieval-Augmented Language Models
Chameleon: a Heterogeneous and Disaggregated Accelerator System for Retrieval-Augmented Language Models
Wenqi Jiang
Marco Zeller
R. Waleffe
Torsten Hoefler
Gustavo Alonso
54
16
0
15 Oct 2023
Machine Unlearning Methodology base on Stochastic Teacher Network
Machine Unlearning Methodology base on Stochastic Teacher Network
Xulong Zhang
Jianzong Wang
Ning Cheng
Yifu Sun
Chuanyao Zhang
Jing Xiao
MU
23
4
0
28 Aug 2023
FACE-AUDITOR: Data Auditing in Facial Recognition Systems
FACE-AUDITOR: Data Auditing in Facial Recognition Systems
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Yang Zhang
CVBM
30
14
0
05 Apr 2023
Membership Inference Attack for Beluga Whales Discrimination
Membership Inference Attack for Beluga Whales Discrimination
Voncarlos Marcelo Araújo
Sébastien Gambs
Clément Chion
Robert Michaud
L. Schneider
H. Lautraite
30
2
0
28 Feb 2023
Towards Unbounded Machine Unlearning
Towards Unbounded Machine Unlearning
M. Kurmanji
Peter Triantafillou
Jamie Hayes
Eleni Triantafillou
MU
28
122
0
20 Feb 2023
Heterogeneous Federated Knowledge Graph Embedding Learning and
  Unlearning
Heterogeneous Federated Knowledge Graph Embedding Learning and Unlearning
Xiangrong Zhu
Guang-pu Li
Wei Hu
MU
FedML
27
48
0
04 Feb 2023
"Real Attackers Don't Compute Gradients": Bridging the Gap Between
  Adversarial ML Research and Practice
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
31
75
0
29 Dec 2022
Similarity Distribution based Membership Inference Attack on Person
  Re-identification
Similarity Distribution based Membership Inference Attack on Person Re-identification
Junyao Gao
Xinyang Jiang
Huishuai Zhang
Yifan Yang
Shuguang Dou
Dongsheng Li
Duoqian Miao
Cheng Deng
Cairong Zhao
23
7
0
29 Nov 2022
Forget Unlearning: Towards True Data-Deletion in Machine Learning
Forget Unlearning: Towards True Data-Deletion in Machine Learning
R. Chourasia
Neil Shah
MU
18
40
0
17 Oct 2022
M^4I: Multi-modal Models Membership Inference
M^4I: Multi-modal Models Membership Inference
Pingyi Hu
Zihan Wang
Ruoxi Sun
Hu Wang
Minhui Xue
39
26
0
15 Sep 2022
On the Privacy Risks of Cell-Based NAS Architectures
On the Privacy Risks of Cell-Based NAS Architectures
Haiping Huang
Zhikun Zhang
Yun Shen
Michael Backes
Qi Li
Yang Zhang
30
7
0
04 Sep 2022
VeriFi: Towards Verifiable Federated Unlearning
VeriFi: Towards Verifiable Federated Unlearning
Xiangshan Gao
Xingjun Ma
Jingyi Wang
Youcheng Sun
Bo Li
S. Ji
Peng Cheng
Jiming Chen
MU
65
46
0
25 May 2022
How to Combine Membership-Inference Attacks on Multiple Updated Models
How to Combine Membership-Inference Attacks on Multiple Updated Models
Matthew Jagielski
Stanley Wu
Alina Oprea
Jonathan R. Ullman
Roxana Geambasu
29
10
0
12 May 2022
Landing AI on Networks: An equipment vendor viewpoint on Autonomous
  Driving Networks
Landing AI on Networks: An equipment vendor viewpoint on Autonomous Driving Networks
Dario Rossi
Liang Zhang
33
13
0
26 Apr 2022
Deep Learning for Computational Cytology: A Survey
Deep Learning for Computational Cytology: A Survey
Hao Jiang
Yanning Zhou
Yi-Mou Lin
R. Chan
Jiangshu Liu
Hao Chen
19
75
0
10 Feb 2022
Deletion Inference, Reconstruction, and Compliance in Machine
  (Un)Learning
Deletion Inference, Reconstruction, and Compliance in Machine (Un)Learning
Ji Gao
Sanjam Garg
Mohammad Mahmoody
Prashant Nalini Vasudevan
MIACV
AAML
19
22
0
07 Feb 2022
Towards Adversarial Evaluations for Inexact Machine Unlearning
Towards Adversarial Evaluations for Inexact Machine Unlearning
Shashwat Goel
Ameya Prabhu
Amartya Sanyal
Ser-Nam Lim
Philip Torr
Ponnurangam Kumaraguru
AAML
ELM
MU
29
47
0
17 Jan 2022
Fast Yet Effective Machine Unlearning
Fast Yet Effective Machine Unlearning
Ayush K Tarun
Vikram S Chundawat
Murari Mandal
Mohan S. Kankanhalli
MU
31
171
0
17 Nov 2021
Property Inference Attacks Against GANs
Property Inference Attacks Against GANs
Junhao Zhou
Yufei Chen
Chao Shen
Yang Zhang
AAML
MIACV
30
52
0
15 Nov 2021
SoK: Machine Learning Governance
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
38
16
0
20 Sep 2021
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Hard to Forget: Poisoning Attacks on Certified Machine Unlearning
Neil G. Marchant
Benjamin I. P. Rubinstein
Scott Alfeld
MU
AAML
22
69
0
17 Sep 2021
Survey: Leakage and Privacy at Inference Time
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
21
71
0
04 Jul 2021
SoK: Privacy-Preserving Collaborative Tree-based Model Learning
SoK: Privacy-Preserving Collaborative Tree-based Model Learning
Sylvain Chatel
Apostolos Pyrgelis
J. Troncoso-Pastoriza
Jean-Pierre Hubaux
15
14
0
16 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
Remember What You Want to Forget: Algorithms for Machine Unlearning
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari
Jayadev Acharya
Gautam Kamath
A. Suresh
FedML
MU
33
284
0
04 Mar 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
19
51
0
08 Feb 2021
A privacy-preserving approach to streaming eye-tracking data
A privacy-preserving approach to streaming eye-tracking data
Brendan David-John
D. Hosfelt
Kevin R. B. Butler
Eakta Jain
35
70
0
02 Feb 2021
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
MU
17
250
0
06 Jul 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Learn to Forget: Machine Unlearning via Neuron Masking
Yang Liu
Zhuo Ma
Ximeng Liu
Jian-wei Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
20
61
0
24 Mar 2020
Towards Probabilistic Verification of Machine Unlearning
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
13
71
0
09 Mar 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
109
130
0
07 Feb 2020
Model-Reuse Attacks on Deep Learning Systems
Model-Reuse Attacks on Deep Learning Systems
Yujie Ji
Xinyang Zhang
S. Ji
Xiapu Luo
Ting Wang
SILM
AAML
134
186
0
02 Dec 2018
1