ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01908
  4. Cited By
A multi-component framework for the analysis and design of explainable
  artificial intelligence

A multi-component framework for the analysis and design of explainable artificial intelligence

5 May 2020
S. Atakishiyev
H. Babiker
Nawshad Farruque
R. Goebel1
Myeongjung Kima
M. H. Motallebi
J. Rabelo
T. Syed
O. R. Zaïane
ArXivPDFHTML

Papers citing "A multi-component framework for the analysis and design of explainable artificial intelligence"

4 / 4 papers shown
Title
Finding Optimal Diverse Feature Sets with Alternative Feature Selection
Finding Optimal Diverse Feature Sets with Alternative Feature Selection
Jakob Bach
27
1
0
21 Jul 2023
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Diagnosing AI Explanation Methods with Folk Concepts of Behavior
Alon Jacovi
Jasmijn Bastings
Sebastian Gehrmann
Yoav Goldberg
Katja Filippova
36
15
0
27 Jan 2022
Explainability Is in the Mind of the Beholder: Establishing the
  Foundations of Explainable Artificial Intelligence
Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence
Kacper Sokol
Peter A. Flach
39
20
0
29 Dec 2021
Neurosymbolic AI: The 3rd Wave
Neurosymbolic AI: The 3rd Wave
Artur Garcez
Luís C. Lamb
NAI
65
292
0
10 Dec 2020
1