ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.01595
  4. Cited By
MorphoCluster: Efficient Annotation of Plankton images by Clustering

MorphoCluster: Efficient Annotation of Plankton images by Clustering

4 May 2020
Simon-Martin Schroder
R. Kiko
Reinhard Koch
ArXivPDFHTML

Papers citing "MorphoCluster: Efficient Annotation of Plankton images by Clustering"

7 / 7 papers shown
Title
SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam
SuoiAI: Building a Dataset for Aquatic Invertebrates in Vietnam
Tue Vo
Lakshay Sharma
Tuan Dinh
Khuong Dinh
T. Nguyen
Trung Phan
Minh Do
Duong Vu
37
0
0
21 Apr 2025
Self-Supervised Pretraining for Fine-Grained Plankton Recognition
Self-Supervised Pretraining for Fine-Grained Plankton Recognition
Joona Kareinen
T. Eerola
K. Kraft
L. Lensu
S. Suikkanen
Heikki Kälviäinen
SSL
174
0
0
14 Mar 2025
Survey of Automatic Plankton Image Recognition: Challenges, Existing
  Solutions and Future Perspectives
Survey of Automatic Plankton Image Recognition: Challenges, Existing Solutions and Future Perspectives
T. Eerola
Daniel Batrakhanov
Nastaran Vatankhah Barazandeh
K. Kraft
Lumi Haraguchi
L. Lensu
S. Suikkanen
Jukka Seppälä
T. Tamminen
Heikki Kälviäinen
22
11
0
19 May 2023
Efficient Unsupervised Learning for Plankton Images
Efficient Unsupervised Learning for Plankton Images
P. D. Alfano
Marco Rando
Marco Letizia
Francesca Odone
Lorenzo Rosasco
Vito Paolo Pastore
10
7
0
14 Sep 2022
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels
  with Overclustering and Inverse Cross-Entropy
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy
Lars Schmarje
Johannes Brunger
M. Santarossa
Simon-Martin Schroder
R. Kiko
Reinhard Koch
47
17
0
13 Oct 2021
Unlocking the potential of deep learning for marine ecology: overview,
  applications, and outlook
Unlocking the potential of deep learning for marine ecology: overview, applications, and outlook
M. G. Olsen
K. Halvorsen
Lei Jiao
Kristian Muri Knausgård
A. H. Martin
M. Moyano
Rebekah A. Oomen
J. H. Rasmussen
T. K. Sørdalen
Susanna Huneide Thorbjørnsen
19
27
0
29 Sep 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
344
11,684
0
09 Mar 2017
1