ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2005.00687
  4. Cited By
Open Graph Benchmark: Datasets for Machine Learning on Graphs
v1v2v3v4v5v6v7 (latest)

Open Graph Benchmark: Datasets for Machine Learning on Graphs

2 May 2020
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
ArXiv (abs)PDFHTML

Papers citing "Open Graph Benchmark: Datasets for Machine Learning on Graphs"

50 / 1,644 papers shown
Title
Graph Positional and Structural Encoder
Graph Positional and Structural Encoder
Semih Cantürk
Renming Liu
Olivier Lapointe-Gagné
Vincent Létourneau
Guy Wolf
Dominique Beaini
Ladislav Rampášek
83
18
0
14 Jul 2023
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of
  the WL Test
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of the WL Test
Arjun Subramonian
Adina Williams
Maximilian Nickel
Yizhou Sun
Levent Sagun
73
0
0
11 Jul 2023
Source-Aware Embedding Training on Heterogeneous Information Networks
Source-Aware Embedding Training on Heterogeneous Information Networks
Tsai Hor Chan
Chi Ho Wong
Jiajun Shen
Guosheng Yin
49
5
0
10 Jul 2023
Learning to Group Auxiliary Datasets for Molecule
Learning to Group Auxiliary Datasets for Molecule
Ting Huang
Ziniu Hu
Rex Ying
61
0
0
08 Jul 2023
Rosko: Row Skipping Outer Products for Sparse Matrix Multiplication
  Kernels
Rosko: Row Skipping Outer Products for Sparse Matrix Multiplication Kernels
Vikas Natesh
Andrew Sabot
H. T. Kung
Mark Ting
58
0
0
08 Jul 2023
Exploring the Potential of Large Language Models (LLMs) in Learning on
  Graphs
Exploring the Potential of Large Language Models (LLMs) in Learning on Graphs
Zhikai Chen
Haitao Mao
Hang Li
Wei Jin
Haifang Wen
...
Shuaiqiang Wang
D. Yin
Wenqi Fan
Hui Liu
Jiliang Tang
AI4CE
162
288
0
07 Jul 2023
PlanE: Representation Learning over Planar Graphs
PlanE: Representation Learning over Planar Graphs
Radoslav Dimitrov
Zeyang Zhao
Ralph Abboud
.Ismail .Ilkan Ceylan
GNN
70
10
0
03 Jul 2023
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
Shenyang Huang
Farimah Poursafaei
Jacob Danovitch
Matthias Fey
Weihua Hu
Emanuele Rossi
J. Leskovec
Michael M. Bronstein
Guillaume Rabusseau
Reihaneh Rabbany
103
98
0
03 Jul 2023
Shared Growth of Graph Neural Networks via Prompted Free-direction
  Knowledge Distillation
Shared Growth of Graph Neural Networks via Prompted Free-direction Knowledge Distillation
Kaituo Feng
Yikun Miao
Changsheng Li
Ye Yuan
Guoren Wang
121
0
0
02 Jul 2023
InferTurbo: A Scalable System for Boosting Full-graph Inference of Graph
  Neural Network over Huge Graphs
InferTurbo: A Scalable System for Boosting Full-graph Inference of Graph Neural Network over Huge Graphs
Dalong Zhang
Xianzheng Song
Zhiyang Hu
Yang Li
Miao Tao
Binbin Hu
Lin Wang
Qing Cui
Jun Zhou
GNN
62
4
0
01 Jul 2023
Graphtester: Exploring Theoretical Boundaries of GNNs on Graph Datasets
Graphtester: Exploring Theoretical Boundaries of GNNs on Graph Datasets
Eren Akbiyik
Florian Grötschla
Béni Egressy
Roger Wattenhofer
41
2
0
30 Jun 2023
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
Ahmed Begga
Francisco Escolano
M. Lozano
Edwin R. Hancock
86
2
0
29 Jun 2023
Accelerating Sampling and Aggregation Operations in GNN Frameworks with
  GPU Initiated Direct Storage Accesses
Accelerating Sampling and Aggregation Operations in GNN Frameworks with GPU Initiated Direct Storage Accesses
Jeongmin Brian Park
Vikram Sharma Mailthody
Zaid Qureshi
Wen-mei W. Hwu
GNN
83
14
0
28 Jun 2023
Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
Xinyu Ma
Xu Chu
Yasha Wang
Yang Lin
Junfeng Zhao
Liantao Ma
Wenwu Zhu
76
9
0
28 Jun 2023
Individual and Structural Graph Information Bottlenecks for
  Out-of-Distribution Generalization
Individual and Structural Graph Information Bottlenecks for Out-of-Distribution Generalization
Ling Yang
Jiayi Zheng
Heyuan Wang
Zhongyi Liu
Zhilin Huang
Shenda Hong
Wentao Zhang
Tengjiao Wang
100
16
0
28 Jun 2023
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and
  New Directions
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions
Lukas Gosch
Simon Geisler
Daniel Sturm
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
AAMLGNN
101
32
0
27 Jun 2023
Unsupervised Episode Generation for Graph Meta-learning
Unsupervised Episode Generation for Graph Meta-learning
Jihyeong Jung
Sang-gyu Seo
Sungwon Kim
Chanyoung Park
BDL
82
0
0
27 Jun 2023
SENSEi: Input-Sensitive Compilation for Accelerating GNNs
SENSEi: Input-Sensitive Compilation for Accelerating GNNs
Damitha Sandeepa Lenadora
Vimarsh Sathia
Gerasimos Gerogiannis
Serif Yesil
Josep Torrellas
Charith Mendis
GNN
68
1
0
27 Jun 2023
Contrastive Meta-Learning for Few-shot Node Classification
Contrastive Meta-Learning for Few-shot Node Classification
Song Wang
Zhen Tan
Huan Liu
Jundong Li
67
17
0
27 Jun 2023
TransERR: Translation-based Knowledge Graph Embedding via Efficient
  Relation Rotation
TransERR: Translation-based Knowledge Graph Embedding via Efficient Relation Rotation
Jiang Li
Xiangdong Su
Fujun Zhang
Guanglai Gao
92
1
0
26 Jun 2023
A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and
  Customized Hardware
A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and Customized Hardware
Shichang Zhang
Atefeh Sohrabizadeh
Cheng Wan
Zijie Huang
Ziniu Hu
Yewen Wang
Yingyan Lin
Lin
Jason Cong
Yizhou Sun
GNNAI4CE
103
25
0
24 Jun 2023
Boosting Multitask Learning on Graphs through Higher-Order Task
  Affinities
Boosting Multitask Learning on Graphs through Higher-Order Task Affinities
Dongyue Li
Haotian Ju
Aneesh Sharma
Hongyang R. Zhang
147
8
0
24 Jun 2023
BatchGNN: Efficient CPU-Based Distributed GNN Training on Very Large
  Graphs
BatchGNN: Efficient CPU-Based Distributed GNN Training on Very Large Graphs
Loc Hoang
Rita Brugarolas Brufau
Ke Ding
Bo Wu
GNN
61
2
0
23 Jun 2023
Directional diffusion models for graph representation learning
Directional diffusion models for graph representation learning
Run Yang
Yuling Yang
Fan Zhou
Qiang Sun
DiffM
49
14
0
22 Jun 2023
On Exploring Node-feature and Graph-structure Diversities for Node Drop
  Graph Pooling
On Exploring Node-feature and Graph-structure Diversities for Node Drop Graph Pooling
Chuang Liu
Yibing Zhan
Baosheng Yu
Liu Liu
Bo Du
Wenbin Hu
Tongliang Liu
103
12
0
22 Jun 2023
Provably Powerful Graph Neural Networks for Directed Multigraphs
Provably Powerful Graph Neural Networks for Directed Multigraphs
Béni Egressy
Luc von Niederhäusern
Jovan Blanusa
Erik Altman
Roger Wattenhofer
Kubilay Atasu
103
19
0
20 Jun 2023
P-tensors: a General Formalism for Constructing Higher Order Message
  Passing Networks
P-tensors: a General Formalism for Constructing Higher Order Message Passing Networks
Tianyi Sun
Andrew R. Hands
Risi Kondor
71
2
0
19 Jun 2023
SGFormer: Simplifying and Empowering Transformers for Large-Graph
  Representations
SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations
Qitian Wu
Wen-Long Zhao
Chenxiao Yang
Hengrui Zhang
Fan Nie
Haitian Jiang
Yatao Bian
Junchi Yan
AI4CE
131
100
0
19 Jun 2023
CompanyKG: A Large-Scale Heterogeneous Graph for Company Similarity
  Quantification
CompanyKG: A Large-Scale Heterogeneous Graph for Company Similarity Quantification
Le-le Cao
Vilhelm von Ehrenheim
Mark Granroth-Wilding
Richard Anselmo Stahl
Andrew McCornack
Armin Catovic
Dhiana Deva Cavalcanti Rocha
102
4
0
18 Jun 2023
Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
  and New Benchmarking
Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls and New Benchmarking
Juanhui Li
Harry Shomer
Haitao Mao
Shenglai Zeng
Yao Ma
Neil Shah
Jiliang Tang
D. Yin
174
59
0
18 Jun 2023
OpenGSL: A Comprehensive Benchmark for Graph Structure Learning
OpenGSL: A Comprehensive Benchmark for Graph Structure Learning
Zhiyao Zhou
Sheng Zhou
Bochao Mao
Xu Zhou
Jiawei Chen
Qiaoyu Tan
Daochen Zha
Yan Feng
Chun-Yen Chen
C. Wang
141
24
0
17 Jun 2023
HomoGCL: Rethinking Homophily in Graph Contrastive Learning
HomoGCL: Rethinking Homophily in Graph Contrastive Learning
Wenzhong Li
Changdong Wang
Hui Xiong
Jian-Huang Lai
84
25
0
16 Jun 2023
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node
  Classification
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification
Wenzhong Li
Changdong Wang
Hui Xiong
Jian-Huang Lai
97
28
0
16 Jun 2023
The Split Matters: Flat Minima Methods for Improving the Performance of
  GNNs
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
N. Lell
A. Scherp
72
1
0
15 Jun 2023
Symmetry-Informed Geometric Representation for Molecules, Proteins, and
  Crystalline Materials
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
...
Anima Anandkumar
C. Borgs
J. Chayes
Hongyu Guo
Jian Tang
AI4CE
99
24
0
15 Jun 2023
Hyperbolic Convolution via Kernel Point Aggregation
Hyperbolic Convolution via Kernel Point Aggregation
Eric Qu
Dongmian Zou
87
3
0
15 Jun 2023
A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph
  Coarsening
A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening
Yifan Chen
Rentian Yao
Yun Yang
Jie Chen
86
8
0
15 Jun 2023
NodeFormer: A Scalable Graph Structure Learning Transformer for Node
  Classification
NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification
Qitian Wu
Wentao Zhao
Zenan Li
David Wipf
Junchi Yan
68
231
0
14 Jun 2023
A Simple and Scalable Graph Neural Network for Large Directed Graphs
A Simple and Scalable Graph Neural Network for Large Directed Graphs
Seiji Maekawa
Yuya Sasaki
Makoto Onizuka
GNN
70
0
0
14 Jun 2023
LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting
LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting
Xu Liu
Yutong Xia
Yuxuan Liang
Junfeng Hu
Yiwei Wang
Lei Bai
Chaoqin Huang
Zhenguang Liu
Bryan Hooi
Roger Zimmermann
AI4TS
84
81
0
14 Jun 2023
Graph Structure and Feature Extrapolation for Out-of-Distribution
  Generalization
Graph Structure and Feature Extrapolation for Out-of-Distribution Generalization
Xiner Li
Shurui Gui
Youzhi Luo
Shuiwang Ji
OODDOOD
91
14
0
13 Jun 2023
Graph Mixup with Soft Alignments
Graph Mixup with Soft Alignments
Hongyi Ling
Zhimeng Jiang
Meng Liu
Shuiwang Ji
Na Zou
AAML
77
22
0
11 Jun 2023
D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching
D2Match: Leveraging Deep Learning and Degeneracy for Subgraph Matching
Xuanzhou Liu
Lin Zhang
Jiaqi Sun
Yujiu Yang
Haiqing Yang
61
2
0
10 Jun 2023
Virtual Node Tuning for Few-shot Node Classification
Virtual Node Tuning for Few-shot Node Classification
Zhen Tan
Ruocheng Guo
Kaize Ding
Huan Liu
98
43
0
09 Jun 2023
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Path Neural Networks: Expressive and Accurate Graph Neural Networks
Gaspard Michel
Giannis Nikolentzos
J. Lutzeyer
Michalis Vazirgiannis
GNN
95
31
0
09 Jun 2023
Expectation-Complete Graph Representations with Homomorphisms
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
55
9
0
09 Jun 2023
Efficient GNN Explanation via Learning Removal-based Attribution
Efficient GNN Explanation via Learning Removal-based Attribution
Yao Rong
Guanchu Wang
Qizhang Feng
Ninghao Liu
Zirui Liu
Enkelejda Kasneci
Helen Zhou
91
9
0
09 Jun 2023
Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs
Quantifying the Knowledge in GNNs for Reliable Distillation into MLPs
Lirong Wu
Haitao Lin
Yufei Huang
Stan Z. Li
82
27
0
09 Jun 2023
On Performance Discrepancies Across Local Homophily Levels in Graph
  Neural Networks
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks
Donald Loveland
Jiong Zhu
Mark Heimann
Benjamin Fish
Michael T. Shaub
Danai Koutra
120
7
0
08 Jun 2023
Enabling tabular deep learning when $d \gg n$ with an auxiliary
  knowledge graph
Enabling tabular deep learning when d≫nd \gg nd≫n with an auxiliary knowledge graph
Camilo Ruiz
Hongyu Ren
Kexin Huang
J. Leskovec
69
2
0
07 Jun 2023
Previous
123...151617...313233
Next