Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2005.00687
Cited By
v1
v2
v3
v4
v5
v6
v7 (latest)
Open Graph Benchmark: Datasets for Machine Learning on Graphs
2 May 2020
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Open Graph Benchmark: Datasets for Machine Learning on Graphs"
50 / 1,644 papers shown
Title
HetCAN: A Heterogeneous Graph Cascade Attention Network with Dual-Level Awareness
Zeyuan Zhao
Qingqing Ge
Anfeng Cheng
Yiding Liu
Xiang Li
Shuaiqiang Wang
38
0
0
06 Nov 2023
From Coupled Oscillators to Graph Neural Networks: Reducing Over-smoothing via a Kuramoto Model-based Approach
Tuan Nguyen
Hirotada Honda
Takashi Sano
Vinh-Tiep Nguyen
Shugo Nakamura
Tan-Minh Nguyen
85
5
0
06 Nov 2023
Edge2Node: Reducing Edge Prediction to Node Classification
Zahed Rahmati
21
0
0
06 Nov 2023
Distributed Matrix-Based Sampling for Graph Neural Network Training
Alok Tripathy
Katherine Yelick
A. Buluç
63
4
0
06 Nov 2023
Architecture Matters: Uncovering Implicit Mechanisms in Graph Contrastive Learning
Xiaojun Guo
Yifei Wang
Zeming Wei
Yisen Wang
103
12
0
05 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
121
5
0
02 Nov 2023
Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Lehman Go Indifferent
Lorenz Kummer
Samir Moustafa
Nils N. Kriege
Wilfried N. Gansterer
GNN
AAML
86
0
0
02 Nov 2023
Better with Less: A Data-Active Perspective on Pre-Training Graph Neural Networks
Jiarong Xu
Renhong Huang
Xin Jiang
Yuxuan Cao
Carl Yang
Chunping Wang
Yang Yang
AI4CE
119
15
0
02 Nov 2023
Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
Runa Eschenhagen
Alexander Immer
Richard Turner
Frank Schneider
Philipp Hennig
135
24
0
01 Nov 2023
Form follows Function: Text-to-Text Conditional Graph Generation based on Functional Requirements
Peter Zachares
Vahan Hovhannisyan
Alan Mosca
Yarin Gal
64
1
0
01 Nov 2023
Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations for Accident Analysis
Abhinav Nippani
Dongyue Li
Haotian Ju
Haris N. Koutsopoulos
Hongyang R. Zhang
GNN
128
8
0
31 Oct 2023
Diversified Node Sampling based Hierarchical Transformer Pooling for Graph Representation Learning
Gaichao Li
Jinsong Chen
John E. Hopcroft
Kun He
46
0
0
31 Oct 2023
Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes
Cai Zhou
Xiyuan Wang
Muhan Zhang
70
17
0
30 Oct 2023
A Metadata-Driven Approach to Understand Graph Neural Networks
Tinghong Li
Qiaozhu Mei
Jiaqi Ma
AI4CE
89
5
0
30 Oct 2023
MAG-GNN: Reinforcement Learning Boosted Graph Neural Network
Lecheng Kong
Jiarui Feng
Hao Liu
Dacheng Tao
Yixin Chen
Muhan Zhang
AI4CE
64
12
0
29 Oct 2023
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
OOD
109
41
0
29 Oct 2023
Hyperbolic Graph Neural Networks at Scale: A Meta Learning Approach
Nurendra Choudhary
Nikhil S. Rao
Chandan K. Reddy
56
7
0
29 Oct 2023
Simple and Asymmetric Graph Contrastive Learning without Augmentations
Teng Xiao
Huaisheng Zhu
Zhengyu Chen
Suhang Wang
89
35
0
29 Oct 2023
Improving Compositional Generalization Using Iterated Learning and Simplicial Embeddings
Yi Ren
Samuel Lavoie
Mikhail Galkin
Danica J. Sutherland
Aaron Courville
86
16
0
28 Oct 2023
Curriculum Learning for Graph Neural Networks: Which Edges Should We Learn First
Zhengwu Zhang
Junxiang Wang
Liang Zhao
75
13
0
28 Oct 2023
Laplacian Canonization: A Minimalist Approach to Sign and Basis Invariant Spectral Embedding
Jiangyan Ma
Yifei Wang
Yisen Wang
109
14
0
28 Oct 2023
Disentangled Representation Learning with Large Language Models for Text-Attributed Graphs
Yi Qin
Xin Eric Wang
Ziwei Zhang
Wenwu Zhu
AI4CE
77
34
0
27 Oct 2023
PSP: Pre-Training and Structure Prompt Tuning for Graph Neural Networks
Qingqing Ge
Zeyuan Zhao
Yiding Liu
Anfeng Cheng
Xiang Li
Shuaiqiang Wang
D. Yin
73
7
0
26 Oct 2023
Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
Shuai Zheng
Zhizhe Liu
Zhenfeng Zhu
Xingxing Zhang
Jianxin Li
Yao-Min Zhao
73
0
0
26 Oct 2023
RDBench: ML Benchmark for Relational Databases
Zizhao Zhang
Yi Yang
Lutong Zou
He Wen
Tao Feng
Jiaxuan You
59
3
0
25 Oct 2023
A Causal Disentangled Multi-Granularity Graph Classification Method
Yuan Li
Li Liu
Penggang Chen
Youmin Zhang
Guoyin Wang
39
1
0
25 Oct 2023
ABKD: Graph Neural Network Compression with Attention-Based Knowledge Distillation
Anshul Ahluwalia
Rohit Das
Payman Behnam
Alind Khare
Pan Li
Alexey Tumanov
109
2
0
24 Oct 2023
Graph Deep Learning for Time Series Forecasting
Andrea Cini
Ivan Marisca
Daniele Zambon
Cesare Alippi
AI4TS
AI4CE
126
16
0
24 Oct 2023
GRENADE: Graph-Centric Language Model for Self-Supervised Representation Learning on Text-Attributed Graphs
Yichuan Li
Kaize Ding
Kyumin Lee
SSL
88
25
0
23 Oct 2023
ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt
Mouxiang Chen
Zemin Liu
Chenghao Liu
Jundong Li
Qiheng Mao
Jianling Sun
AAML
88
14
0
23 Oct 2023
Rethinking Tokenizer and Decoder in Masked Graph Modeling for Molecules
Zhiyuan Liu
Yaorui Shi
An Zhang
Enzhi Zhang
Kenji Kawaguchi
Xiang Wang
Tat-Seng Chua
AI4CE
88
40
0
23 Oct 2023
Efficient Heterogeneous Graph Learning via Random Projection
Jun Hu
Bryan Hooi
Bingsheng He
106
12
0
23 Oct 2023
Ensemble Learning for Graph Neural Networks
Zhen Hao Wong
Ling Yue
Quanming Yao
94
0
0
22 Oct 2023
GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
Mufei Li
Eleonora Kreacic
Vamsi K. Potluru
Pan Li
DiffM
86
10
0
20 Oct 2023
Pretraining Language Models with Text-Attributed Heterogeneous Graphs
Tao Zou
Le Yu
Yifei Huang
Leilei Sun
Bo Du
AI4CE
62
17
0
19 Oct 2023
Open-World Lifelong Graph Learning
Marcel Hoffmann
Lukas Galke
A. Scherp
98
5
0
19 Oct 2023
GraphGPT: Graph Instruction Tuning for Large Language Models
Jiabin Tang
Yuhao Yang
Wei Wei
Lei Shi
Lixin Su
Suqi Cheng
D. Yin
Chao Huang
157
148
0
19 Oct 2023
Cooperative Minibatching in Graph Neural Networks
M. F. Balin
Dominique LaSalle
Ümit V. Çatalyürek
GNN
71
1
0
19 Oct 2023
MuseGNN: Forming Scalable, Convergent GNN Layers that Minimize a Sampling-Based Energy
Haitian Jiang
Renjie Liu
Xiao Yan
Zhenkun Cai
Minjie Wang
David Wipf
Minjie Wang
David Wipf
GNN
AI4CE
91
3
0
19 Oct 2023
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Lin Wang
Wenqi Fan
Jiatong Li
Yao Ma
Qing Li
DD
92
31
0
17 Oct 2023
Accelerating Scalable Graph Neural Network Inference with Node-Adaptive Propagation
Xin Gao
Wentao Zhang
Junliang Yu
Yingxiao Shao
Quoc Viet Hung Nguyen
Tengjiao Wang
Hongzhi Yin
AI4CE
GNN
116
10
0
17 Oct 2023
A Local Graph Limits Perspective on Sampling-Based GNNs
Yeganeh Alimohammadi
Luana Ruiz
Amin Saberi
64
3
0
17 Oct 2023
Heterogenous Memory Augmented Neural Networks
Zihan Qiu
Zhen Liu
Shuicheng Yan
Shanghang Zhang
Jie Fu
68
0
0
17 Oct 2023
SGOOD: Substructure-enhanced Graph-Level Out-of-Distribution Detection
Zhihao Ding
Jieming Shi
Shiqi Shen
Xuequn Shang
Jiannong Cao
Zhipeng Wang
Zhi Gong
OODD
OOD
101
4
0
16 Oct 2023
From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond
Andi Han
Dai Shi
Lequan Lin
Junbin Gao
AI4CE
GNN
107
24
0
16 Oct 2023
Score-Based Methods for Discrete Optimization in Deep Learning
Eric Lei
Arman Adibi
Hamed Hassani
83
1
0
15 Oct 2023
Mirage: Model-Agnostic Graph Distillation for Graph Classification
Mridul Gupta
S. Manchanda
H. Kodamana
Sayan Ranu
DD
89
16
0
14 Oct 2023
Graph Distillation with Eigenbasis Matching
Yang Liu
Deyu Bo
Chuan Shi
DD
140
10
0
13 Oct 2023
Does Graph Distillation See Like Vision Dataset Counterpart?
Beining Yang
Kai Wang
Qingyun Sun
Cheng Ji
Xingcheng Fu
Hao Tang
Yang You
Jianxin Li
DD
71
45
0
13 Oct 2023
Relation-aware Ensemble Learning for Knowledge Graph Embedding
Ling Yue
Yongqi Zhang
Quanming Yao
Yong Li
Xian Wu
Ziheng Zhang
Zhenxi Lin
Yefeng Zheng
70
4
0
13 Oct 2023
Previous
1
2
3
...
12
13
14
...
31
32
33
Next