ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.15004
  4. Cited By
CNN Explainer: Learning Convolutional Neural Networks with Interactive
  Visualization

CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization

30 April 2020
Zijie J. Wang
Robert Turko
Omar Shaikh
Haekyu Park
Nilaksh Das
Fred Hohman
Minsuk Kahng
Duen Horng Chau
    HAI
    FAtt
ArXivPDFHTML

Papers citing "CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization"

22 / 22 papers shown
Title
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Interactivity x Explainability: Toward Understanding How Interactivity Can Improve Computer Vision Explanations
Indu Panigrahi
Sunnie S. Y. Kim
Amna Liaqat
Rohan Jinturkar
Olga Russakovsky
Ruth C. Fong
Parastoo Abtahi
FAtt
HAI
155
1
0
14 Apr 2025
Transformer-Driven Inverse Problem Transform for Fast Blind Hyperspectral Image Dehazing
Transformer-Driven Inverse Problem Transform for Fast Blind Hyperspectral Image Dehazing
Po-Wei Tang
Chia-Hsiang Lin
Yangrui Liu
93
6
0
03 Jan 2025
Analyzing the Noise Robustness of Deep Neural Networks
Analyzing the Noise Robustness of Deep Neural Networks
Kelei Cao
Mengchen Liu
Hang Su
Jing Wu
Jun Zhu
Shixia Liu
AAML
109
89
0
26 Jan 2020
Massif: Interactive Interpretation of Adversarial Attacks on Deep
  Learning
Massif: Interactive Interpretation of Adversarial Attacks on Deep Learning
Nilaksh Das
Haekyu Park
Zijie J. Wang
Fred Hohman
Robert Firstman
Emily Rogers
Duen Horng Chau
AAML
37
7
0
21 Jan 2020
CNN 101: Interactive Visual Learning for Convolutional Neural Networks
CNN 101: Interactive Visual Learning for Convolutional Neural Networks
Zijie J. Wang
Robert Turko
Omar Shaikh
Haekyu Park
Nilaksh Das
Fred Hohman
Minsuk Kahng
Duen Horng Chau
SSL
HAI
FAtt
37
25
0
07 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
277
42,038
0
03 Dec 2019
Summit: Scaling Deep Learning Interpretability by Visualizing Activation
  and Attribution Summarizations
Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations
Fred Hohman
Haekyu Park
Caleb Robinson
Duen Horng Chau
FAtt
3DH
HAI
37
215
0
04 Apr 2019
TensorFlow.js: Machine Learning for the Web and Beyond
TensorFlow.js: Machine Learning for the Web and Beyond
D. Smilkov
Nikhil Thorat
Yannick Assogba
Ann Yuan
Nick Kreeger
...
D. Sculley
R. Monga
G. Corrado
F. Viégas
Martin Wattenberg
63
173
0
16 Jan 2019
GAN Lab: Understanding Complex Deep Generative Models using Interactive
  Visual Experimentation
GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation
Minsuk Kahng
Nikhil Thorat
Duen Horng Chau
F. Viégas
Martin Wattenberg
HAI
GAN
33
170
0
05 Sep 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next
  Frontiers
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
65
538
0
21 Jan 2018
Do Convolutional Neural Networks Learn Class Hierarchy?
Do Convolutional Neural Networks Learn Class Hierarchy?
B. Alsallakh
Amin Jourabloo
Mao Ye
Xiaoming Liu
Liu Ren
121
212
0
17 Oct 2017
Direct-Manipulation Visualization of Deep Networks
Direct-Manipulation Visualization of Deep Networks
D. Smilkov
Shan Carter
D. Sculley
F. Viégas
Martin Wattenberg
FAtt
AI4CE
48
140
0
12 Aug 2017
Adversarial-Playground: A Visualization Suite Showing How Adversarial
  Examples Fool Deep Learning
Adversarial-Playground: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning
Andrew P. Norton
Yanjun Qi
AAML
38
47
0
01 Aug 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
453
129,831
0
12 Jun 2017
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models
Minsuk Kahng
Pierre Yves Andrews
Aditya Kalro
Duen Horng Chau
HAI
47
323
0
06 Apr 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
269
4,620
0
10 Nov 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
338
18,300
0
27 May 2016
Towards Better Analysis of Deep Convolutional Neural Networks
Towards Better Analysis of Deep Convolutional Neural Networks
Mengchen Liu
Jiaxin Shi
Zerui Li
Chongxuan Li
Jun Zhu
Shixia Liu
HAI
69
473
0
24 Apr 2016
Recent Advances in Convolutional Neural Networks
Recent Advances in Convolutional Neural Networks
Jiuxiang Gu
Zhenhua Wang
Jason Kuen
Lianyang Ma
Amir Shahroudy
...
Xingxing Wang
Li Wang
Gang Wang
Jianfei Cai
Tsuhan Chen
124
5,184
0
22 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
99
1,866
0
22 Jun 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
954
99,991
0
04 Sep 2014
1