Natural Language Premise Selection: Finding Supporting Statements for Mathematical Text

Abstract
Mathematical text is written using a combination of words and mathematical expressions. This combination, along with a specific way of structuring sentences makes it challenging for state-of-art NLP tools to understand and reason on top of mathematical discourse. In this work, we propose a new NLP task, the natural premise selection, which is used to retrieve supporting definitions and supporting propositions that are useful for generating an informal mathematical proof for a particular statement. We also make available a dataset, NL-PS, which can be used to evaluate different approaches for the natural premise selection task. Using different baselines, we demonstrate the underlying interpretation challenges associated with the task.
View on arXivComments on this paper