ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.14003
  4. Cited By
The International Workshop on Osteoarthritis Imaging Knee MRI
  Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework
  on a Standardized Dataset
v1v2 (latest)

The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset

29 April 2020
Arjun D Desai
Francesco Calivá
C. Iriondo
Naji Khosravan
Aliasghar Mortazi
S. Jambawalikar
Drew Torigian
J. Ellerman
Mehmet Akçakaya
Ulas Bagci
R. Tibrewala
I. Flament
Matthew OBrien
S. Majumdar
Mathias Perslev
A. Pai
Christian Igel
Erik Dam
S. Gaj
Mingrui Yang
Kunio Nakamura
Xiaojuan Li
Cem M. Deniz
V. Juras
R. Regatte
G. Gold
B. Hargreaves
V. Pedoia
Akshay S. Chaudhari
ArXiv (abs)PDFHTML

Papers citing "The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset"

5 / 5 papers shown
Title
Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance
Putting the Segment Anything Model to the Test with 3D Knee MRI - A Comparison with State-of-the-Art Performance
Oliver Mills
Philip G. Conaghan
Nishant Ravikumar
Samuel D. Relton
MedIm
112
0
0
17 Apr 2025
MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning
MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning
Hwihun Jeong
S. Chun
Jongho Lee
89
2
0
16 Sep 2024
Selecting the Best Optimizers for Deep Learning based Medical Image
  Segmentation
Selecting the Best Optimizers for Deep Learning based Medical Image Segmentation
Aliasghar Mortazi
V. Çiçek
Elif Keles
Ulas Bagci
74
12
0
05 Feb 2023
Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised
  Learning
Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised Learning
J. Dominic
Nandita Bhaskhar
Arjun D Desai
Andrew M Schmidt
E. Rubin
...
G. Gold
B. Hargreaves
L. Lenchik
R. Boutin
Akshay S. Chaudhari
64
0
0
14 Oct 2022
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image
  Labels for Quantitative Clinical Evaluation
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation
Arjun D Desai
Andrew M Schmidt
E. Rubin
Christopher M. Sandino
Marianne S. Black
...
R. Boutin
Christopher Ré
G. Gold
B. Hargreaves
Akshay S. Chaudhari
88
65
0
14 Mar 2022
1