Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.13465
Cited By
Nearly Optimal Regret for Stochastic Linear Bandits with Heavy-Tailed Payoffs
28 April 2020
Bo Xue
Guanghui Wang
Yimu Wang
Lijun Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nearly Optimal Regret for Stochastic Linear Bandits with Heavy-Tailed Payoffs"
11 / 11 papers shown
Title
Catoni Contextual Bandits are Robust to Heavy-tailed Rewards
Chenlu Ye
Yujia Jin
Alekh Agarwal
Tong Zhang
165
0
0
04 Feb 2025
Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs
Han Shao
Xiaotian Yu
Irwin King
Michael R. Lyu
45
46
0
25 Oct 2018
Online Stochastic Linear Optimization under One-bit Feedback
Lijun Zhang
Tianbao Yang
Rong Jin
Zhi Zhou
52
65
0
25 Sep 2015
Bandit Convex Optimization: sqrt{T} Regret in One Dimension
Sébastien Bubeck
O. Dekel
Tomer Koren
Yuval Peres
109
36
0
23 Feb 2015
Loss minimization and parameter estimation with heavy tails
Daniel J. Hsu
Sivan Sabato
128
188
0
07 Jul 2013
Bandits with heavy tail
Sébastien Bubeck
Nicolò Cesa-Bianchi
Gábor Lugosi
172
290
0
08 Sep 2012
PAC-Bayesian Inequalities for Martingales
Yevgeny Seldin
François Laviolette
Nicolò Cesa-Bianchi
John Shawe-Taylor
P. Auer
105
127
0
31 Oct 2011
Stochastic convex optimization with bandit feedback
Alekh Agarwal
Dean Phillips Foster
Daniel J. Hsu
Sham Kakade
Alexander Rakhlin
159
240
0
08 Jul 2011
Lipschitz Bandits without the Lipschitz Constant
Sébastien Bubeck
Gilles Stoltz
Jia Yuan Yu
113
90
0
25 May 2011
Challenging the empirical mean and empirical variance: a deviation study
O. Catoni
149
462
0
10 Sep 2010
Multi-Armed Bandits in Metric Spaces
Robert D. Kleinberg
Aleksandrs Slivkins
E. Upfal
350
468
0
29 Sep 2008
1