ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.13291
  4. Cited By
Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners

Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners

28 April 2020
Rodrigo Canaan
Xianbo Gao
Youjin Chung
Julian Togelius
Andy Nealen
Stefan Menzel
ArXivPDFHTML

Papers citing "Evaluating the Rainbow DQN Agent in Hanabi with Unseen Partners"

17 / 17 papers shown
Title
"Other-Play" for Zero-Shot Coordination
"Other-Play" for Zero-Shot Coordination
Hengyuan Hu
Adam Lerer
A. Peysakhovich
Jakob N. Foerster
VLM
OffRL
143
219
0
06 Mar 2020
Improving Policies via Search in Cooperative Partially Observable Games
Improving Policies via Search in Cooperative Partially Observable Games
Adam Lerer
Hengyuan Hu
Jakob N. Foerster
Noam Brown
37
78
0
05 Dec 2019
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning
Hengyuan Hu
Jakob N. Foerster
OffRL
26
82
0
04 Dec 2019
Diverse Agents for Ad-Hoc Cooperation in Hanabi
Diverse Agents for Ad-Hoc Cooperation in Hanabi
Rodrigo Canaan
Julian Togelius
Andy Nealen
Stefan Menzel
10
46
0
08 Jul 2019
Re-determinizing Information Set Monte Carlo Tree Search in Hanabi
Re-determinizing Information Set Monte Carlo Tree Search in Hanabi
J. Goodman
33
14
0
16 Feb 2019
AlphaStar: An Evolutionary Computation Perspective
AlphaStar: An Evolutionary Computation Perspective
Kai Arulkumaran
Antoine Cully
Julian Togelius
25
183
0
05 Feb 2019
The Hanabi Challenge: A New Frontier for AI Research
The Hanabi Challenge: A New Frontier for AI Research
Nolan Bard
Jakob N. Foerster
A. Chandar
Neil Burch
Marc Lanctot
...
Iain Dunning
Shibl Mourad
Hugo Larochelle
Marc G. Bellemare
Michael Bowling
LLMAG
28
351
0
01 Feb 2019
Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning
Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
H. F. Song
Edward Hughes
Neil Burch
Iain Dunning
Shimon Whiteson
M. Botvinick
Michael Bowling
38
148
0
04 Nov 2018
Evolving Agents for the Hanabi 2018 CIG Competition
Evolving Agents for the Hanabi 2018 CIG Competition
Rodrigo Canaan
Haotian Shen
R. Torrado
Julian Togelius
Andy Nealen
Stefan Menzel
12
25
0
26 Sep 2018
Towards Game-based Metrics for Computational Co-creativity
Towards Game-based Metrics for Computational Co-creativity
Rodrigo Canaan
Stefan Menzel
Julian Togelius
Andy Nealen
29
9
0
26 Sep 2018
IMPALA: Scalable Distributed Deep-RL with Importance Weighted
  Actor-Learner Architectures
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
138
1,584
0
05 Feb 2018
Rainbow: Combining Improvements in Deep Reinforcement Learning
Rainbow: Combining Improvements in Deep Reinforcement Learning
Matteo Hessel
Joseph Modayil
H. V. Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
M. G. Azar
David Silver
OffRL
87
2,255
0
06 Oct 2017
Evaluating and Modelling Hanabi-Playing Agents
Evaluating and Modelling Hanabi-Playing Agents
Joseph Walton-Rivers
P. R. Williams
R. Bartle
Diego Perez-Liebana
Simon Lucas
LLMAG
21
49
0
24 Apr 2017
Illuminating search spaces by mapping elites
Illuminating search spaces by mapping elites
Jean-Baptiste Mouret
Jeff Clune
46
728
0
20 Apr 2015
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
78
12,163
0
19 Dec 2013
The Arcade Learning Environment: An Evaluation Platform for General
  Agents
The Arcade Learning Environment: An Evaluation Platform for General Agents
Marc G. Bellemare
Yavar Naddaf
J. Veness
Michael Bowling
61
2,992
0
19 Jul 2012
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
356
7,650
0
03 Jul 2012
1