ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.12170
  4. Cited By
Revisiting Sequence-to-Sequence Video Object Segmentation with
  Multi-Task Loss and Skip-Memory

Revisiting Sequence-to-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory

25 April 2020
Fatemeh Azimi
B. Bischke
Sebastián M. Palacio
Federico Raue
Jörn Hees
Andreas Dengel
    VOS
    VLM
ArXivPDFHTML

Papers citing "Revisiting Sequence-to-Sequence Video Object Segmentation with Multi-Task Loss and Skip-Memory"

2 / 2 papers shown
Title
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
451
15,652
0
02 Nov 2015
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
239
7,916
0
13 Jun 2015
1