ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08388
13
66

Multi-Modal Face Anti-Spoofing Based on Central Difference Networks

17 April 2020
Zitong Yu
Yunxiao Qin
Xiaobai Li
Zezheng Wang
Chenxu Zhao
Zhen Lei
Guoying Zhao
    CVBM
    3DPC
ArXivPDFHTML
Abstract

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems from presentation attacks. Existing multi-modal FAS methods rely on stacked vanilla convolutions, which is weak in describing detailed intrinsic information from modalities and easily being ineffective when the domain shifts (e.g., cross attack and cross ethnicity). In this paper, we extend the central difference convolutional networks (CDCN) \cite{yu2020searching} to a multi-modal version, intending to capture intrinsic spoofing patterns among three modalities (RGB, depth and infrared). Meanwhile, we also give an elaborate study about single-modal based CDCN. Our approach won the first place in "Track Multi-Modal" as well as the second place in "Track Single-Modal (RGB)" of ChaLearn Face Anti-spoofing Attack Detection Challenge@CVPR2020 \cite{liu2020cross}. Our final submission obtains 1.02±\pm±0.59\% and 4.84±\pm±1.79\% ACER in "Track Multi-Modal" and "Track Single-Modal (RGB)", respectively. The codes are available at{https://github.com/ZitongYu/CDCN}.

View on arXiv
Comments on this paper