ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08376
  4. Cited By
Learning Stochastic Closures Using Ensemble Kalman Inversion

Learning Stochastic Closures Using Ensemble Kalman Inversion

17 April 2020
T. Schneider
Andrew M. Stuart
Jin-Long Wu
ArXivPDFHTML

Papers citing "Learning Stochastic Closures Using Ensemble Kalman Inversion"

11 / 11 papers shown
Title
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation
Chuanqi Chen
Nan Chen
Yinling Zhang
Jin-Long Wu
AI4CE
59
2
0
26 Oct 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
65
5
0
06 Aug 2024
Ensemble Inference Methods for Models With Noisy and Expensive
  Likelihoods
Ensemble Inference Methods for Models With Noisy and Expensive Likelihoods
Oliver R. A. Dunbar
Andrew B. Duncan
Andrew M. Stuart
Marie-Therese Wolfram
74
27
0
07 Apr 2021
Calibration and Uncertainty Quantification of Convective Parameters in
  an Idealized GCM
Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM
Oliver R. A. Dunbar
A. Garbuno-Iñigo
T. Schneider
Andrew M. Stuart
49
59
0
24 Dec 2020
Bayesian inference of chaotic dynamics by merging data assimilation,
  machine learning and expectation-maximization
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet
J. Brajard
A. Carrassi
Laurent Bertino
28
104
0
17 Jan 2020
Calibrate, Emulate, Sample
Calibrate, Emulate, Sample
Emmet Cleary
A. Garbuno-Iñigo
Shiwei Lan
T. Schneider
Andrew M. Stuart
57
103
0
10 Jan 2020
Sparse learning of stochastic dynamic equations
Sparse learning of stochastic dynamic equations
L. Boninsegna
Feliks Nuske
C. Clementi
32
215
0
06 Dec 2017
Earth System Modeling 2.0: A Blueprint for Models That Learn From
  Observations and Targeted High-Resolution Simulations
Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations
T. Schneider
Shiwei Lan
Andrew M. Stuart
J. Teixeira
AI4Cl
50
315
0
31 Aug 2017
A new framework for extracting coarse-grained models from time series
  with multiscale structure
A new framework for extracting coarse-grained models from time series with multiscale structure
S. Kalliadasis
S. Krumscheid
G. Pavliotis
AI4TS
76
21
0
05 Sep 2014
Semi-Parametric Drift and Diffusion Estimation for Multiscale Diffusions
Semi-Parametric Drift and Diffusion Estimation for Multiscale Diffusions
S. Krumscheid
G. Pavliotis
S. Kalliadasis
95
31
0
08 Nov 2011
Maximum Likelihood Drift Estimation for Multiscale Diffusions
Maximum Likelihood Drift Estimation for Multiscale Diffusions
A. Papavasiliou
G. Pavliotis
Andrew M. Stuart
150
65
0
19 Jun 2008
1