ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.08051
6
10

Approximate Inverse Reinforcement Learning from Vision-based Imitation Learning

17 April 2020
Keuntaek Lee
Bogdan I. Vlahov
Jason Gibson
James M. Rehg
Evangelos A. Theodorou
ArXivPDFHTML
Abstract

In this work, we present a method for obtaining an implicit objective function for vision-based navigation. The proposed methodology relies on Imitation Learning, Model Predictive Control (MPC), and an interpretation technique used in Deep Neural Networks. We use Imitation Learning as a means to do Inverse Reinforcement Learning in order to create an approximate cost function generator for a visual navigation challenge. The resulting cost function, the costmap, is used in conjunction with MPC for real-time control and outperforms other state-of-the-art costmap generators in novel environments. The proposed process allows for simple training and robustness to out-of-sample data. We apply our method to the task of vision-based autonomous driving in multiple real and simulated environments and show its generalizability.

View on arXiv
Comments on this paper