ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07906
  4. Cited By
Development and Interpretation of a Neural Network-Based Synthetic Radar
  Reflectivity Estimator Using GOES-R Satellite Observations

Development and Interpretation of a Neural Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations

16 April 2020
Kyle Hilburn
I. Ebert‐Uphoff
S. Miller
ArXiv (abs)PDFHTML

Papers citing "Development and Interpretation of a Neural Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations"

7 / 7 papers shown
Title
Physically Interpretable Neural Networks for the Geosciences:
  Applications to Earth System Variability
Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability
B. Toms
E. Barnes
I. Ebert‐Uphoff
AI4CE
73
215
0
04 Dec 2019
Distributed Deep Learning for Precipitation Nowcasting
Distributed Deep Learning for Precipitation Nowcasting
S. Samsi
Christopher J. Mattioli
Mark S. Veillette
67
23
0
28 Aug 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
104
1,021
0
26 Feb 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,271
0
24 Jun 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAttODL
207
2,236
0
12 Jun 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
102
1,803
0
15 Jan 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,441
0
18 May 2015
1