ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07312
  4. Cited By
RescueNet: Joint Building Segmentation and Damage Assessment from
  Satellite Imagery

RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery

15 April 2020
Rohit Gupta
M. Shah
ArXivPDFHTML

Papers citing "RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery"

6 / 6 papers shown
Title
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Hongruixuan Chen
Jian Song
Olivier Dietrich
Clifford Broni-bediako
Weihao Xuan
...
Yimin Wei
J. Xia
Cuiling Lan
Konrad Schindler
Naoto Yokoya
105
6
0
10 Jan 2025
Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model
Generalizable Disaster Damage Assessment via Change Detection with Vision Foundation Model
Kyeongjin Ahn
Sungwon Han
Sungwon Park
Jihee Kim
Sangyoon Park
Meeyoung Cha
54
2
0
12 Jun 2024
Building Damage Detection in Satellite Imagery Using Convolutional
  Neural Networks
Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks
Joseph Z. Xu
W. Lu
Zebo Li
Pranav Khaitan
Valeriya Zaytseva
25
131
0
14 Oct 2019
Learning to predict crisp boundaries
Learning to predict crisp boundaries
Ruoxi Deng
Chunhua Shen
S. Liu
Huibing Wang
Xinru Liu
44
238
0
26 Jul 2018
TernausNetV2: Fully Convolutional Network for Instance Segmentation
TernausNetV2: Fully Convolutional Network for Instance Segmentation
V. Iglovikov
Selim S. Seferbekov
A. Buslaev
Alexey A. Shvets
SSeg
61
157
0
03 Jun 2018
LinkNet: Exploiting Encoder Representations for Efficient Semantic
  Segmentation
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
Abhishek Chaurasia
Eugenio Culurciello
SSeg
41
1,375
0
14 Jun 2017
1