Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.05703
Cited By
DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments
12 April 2020
Fan Mo
Ali Shahin Shamsabadi
Kleomenis Katevas
Soteris Demetriou
Ilias Leontiadis
Andrea Cavallaro
Hamed Haddadi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments"
22 / 22 papers shown
Title
DITING: A Static Analyzer for Identifying Bad Partitioning Issues in TEE Applications
Chengyan Ma
Ruidong Han
Ye Liu
Yuqing Niu
Di Lu
Chuang Tian
Jianfeng Ma
Debin Gao
David Lo
57
0
0
24 Feb 2025
Laminator: Verifiable ML Property Cards using Hardware-assisted Attestations
Vasisht Duddu
Oskari Jarvinen
Lachlan J. Gunn
Nirmal Asokan
69
1
0
25 Jun 2024
Memory-Efficient and Secure DNN Inference on TrustZone-enabled Consumer IoT Devices
Xueshuo Xie
Haoxu Wang
Zhaolong Jian
Tao Li
Wei Wang
Zhiwei Xu
Gui-Ping Wang
44
2
0
19 Mar 2024
All Rivers Run to the Sea: Private Learning with Asymmetric Flows
Yue Niu
Ramy E. Ali
Saurav Prakash
Salman Avestimehr
FedML
33
2
0
05 Dec 2023
Edge Deep Learning Model Protection via Neuron Authorization
Jinyin Chen
Haibin Zheng
Tianming Liu
Rongchang Li
Yao Cheng
Xuhong Zhang
S. Ji
FedML
29
0
0
22 Mar 2023
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
47
8
0
19 Oct 2022
RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency IoT systems
Emna Baccour
A. Erbad
Amr M. Mohamed
Mounir Hamdi
Mohsen Guizani
30
12
0
27 Aug 2022
Shielding Federated Learning Systems against Inference Attacks with ARM TrustZone
Aghiles Ait Messaoud
Sonia Ben Mokhtar
Vlad Nitu
V. Schiavoni
FedML
6
16
0
11 Aug 2022
DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware
H. Hashemi
Yongqin Wang
M. Annavaram
FedML
26
58
0
30 Jun 2022
Edge Security: Challenges and Issues
Xin Jin
Charalampos Katsis
Fan Sang
Jiahao Sun
A. Kundu
Ramana Rao Kompella
47
8
0
14 Jun 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Private delegated computations using strong isolation
Mathias Brossard
Guilhem Bryant
Basma El Gaabouri
Xinxin Fan
Alexandre Ferreira
...
Dominic P. Mulligan
Nick Spinale
Eric van Hensbergen
Hugo J. M. Vincent
Shale Xiong
26
4
0
06 May 2022
MixNN: A design for protecting deep learning models
Chao Liu
Hao Chen
Yusen Wu
Rui Jin
10
0
0
28 Mar 2022
Distributed data analytics
Richard Mortier
Hamed Haddadi
S. S. Rodríguez
Liang Wang
29
2
0
26 Mar 2022
Training privacy-preserving video analytics pipelines by suppressing features that reveal information about private attributes
C. Li
Andrea Cavallaro
PICV
14
0
0
05 Mar 2022
Towards Battery-Free Machine Learning and Inference in Underwater Environments
Yuchen Zhao
Sayed Saad Afzal
Waleed Akbar
Osvy Rodriguez
Fan Mo
David E. Boyle
Fadel M. Adib
Hamed Haddadi
3DV
27
19
0
16 Feb 2022
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
Minimum Viable Device Drivers for ARM TrustZone
Liwei Guo
F. Lin
24
18
0
15 Oct 2021
Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs
Mohammad Malekzadeh
Anastasia Borovykh
Deniz Gündüz
MIACV
19
42
0
25 May 2021
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
Mario Almeida
Stefanos Laskaridis
Stylianos I. Venieris
Ilias Leontiadis
Nicholas D. Lane
17
36
0
20 Apr 2021
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
65
29
0
02 Feb 2021
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
114
395
0
08 Jun 2018
1