Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.03685
Cited By
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
7 April 2020
Alon Jacovi
Yoav Goldberg
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?"
31 / 381 papers shown
Title
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection
Binny Mathew
Punyajoy Saha
Seid Muhie Yimam
Chris Biemann
Pawan Goyal
Animesh Mukherjee
47
551
0
18 Dec 2020
Predicting Events in MOBA Games: Prediction, Attribution, and Evaluation
Zelong Yang
Yan Wang
Piji Li
Shaobin Lin
Shuming Shi
Shao-Lun Huang
Wei Bi
20
12
0
17 Dec 2020
AIST: An Interpretable Attention-based Deep Learning Model for Crime Prediction
Yeasir Rayhan
T. Hashem
24
22
0
16 Dec 2020
Learning to Rationalize for Nonmonotonic Reasoning with Distant Supervision
Faeze Brahman
Vered Shwartz
Rachel Rudinger
Yejin Choi
LRM
15
42
0
14 Dec 2020
Deep Argumentative Explanations
Emanuele Albini
Piyawat Lertvittayakumjorn
Antonio Rago
Francesca Toni
AAML
26
4
0
10 Dec 2020
Efficient Estimation of Influence of a Training Instance
Sosuke Kobayashi
Sho Yokoi
Jun Suzuki
Kentaro Inui
TDI
32
15
0
08 Dec 2020
Probing Multilingual BERT for Genetic and Typological Signals
Taraka Rama
Lisa Beinborn
Steffen Eger
19
24
0
04 Nov 2020
Measuring Association Between Labels and Free-Text Rationales
Sarah Wiegreffe
Ana Marasović
Noah A. Smith
282
172
0
24 Oct 2020
Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs
Ana Marasović
Chandra Bhagavatula
J. S. Park
Ronan Le Bras
Noah A. Smith
Yejin Choi
ReLM
LRM
18
62
0
15 Oct 2020
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
255
427
0
15 Oct 2020
The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?
Jasmijn Bastings
Katja Filippova
XAI
LRM
54
174
0
12 Oct 2020
Explaining Neural Matrix Factorization with Gradient Rollback
Carolin (Haas) Lawrence
T. Sztyler
Mathias Niepert
22
12
0
12 Oct 2020
Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?
Peter Hase
Shiyue Zhang
Harry Xie
Joey Tianyi Zhou
29
99
0
08 Oct 2020
Why do you think that? Exploring Faithful Sentence-Level Rationales Without Supervision
Max Glockner
Ivan Habernal
Iryna Gurevych
LRM
27
25
0
07 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
15
63
0
01 Oct 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
M. Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
36
214
0
01 Oct 2020
A Diagnostic Study of Explainability Techniques for Text Classification
Pepa Atanasova
J. Simonsen
Christina Lioma
Isabelle Augenstein
XAI
FAtt
17
219
0
25 Sep 2020
Are Interpretations Fairly Evaluated? A Definition Driven Pipeline for Post-Hoc Interpretability
Ninghao Liu
Yunsong Meng
Xia Hu
Tie Wang
Bo Long
XAI
FAtt
23
7
0
16 Sep 2020
QED: A Framework and Dataset for Explanations in Question Answering
Matthew Lamm
J. Palomaki
Chris Alberti
D. Andor
Eunsol Choi
Livio Baldini Soares
Michael Collins
18
68
0
08 Sep 2020
Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models
Tushar Khot
Daniel Khashabi
Kyle Richardson
Peter Clark
Ashish Sabharwal
ReLM
9
85
0
01 Sep 2020
Influence Functions in Deep Learning Are Fragile
S. Basu
Phillip E. Pope
S. Feizi
TDI
37
219
0
25 Jun 2020
Aligning Faithful Interpretations with their Social Attribution
Alon Jacovi
Yoav Goldberg
23
105
0
01 Jun 2020
Explaining Black Box Predictions and Unveiling Data Artifacts through Influence Functions
Xiaochuang Han
Byron C. Wallace
Yulia Tsvetkov
MILM
FAtt
AAML
TDI
23
165
0
14 May 2020
Evaluating Explanation Methods for Neural Machine Translation
Jierui Li
Lemao Liu
Huayang Li
Guanlin Li
Guoping Huang
Shuming Shi
18
23
0
04 May 2020
Obtaining Faithful Interpretations from Compositional Neural Networks
Sanjay Subramanian
Ben Bogin
Nitish Gupta
Tomer Wolfson
Sameer Singh
Jonathan Berant
Matt Gardner
19
42
0
02 May 2020
How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking
Nicola De Cao
M. Schlichtkrull
Wilker Aziz
Ivan Titov
25
90
0
30 Apr 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Model Agnostic Multilevel Explanations
Karthikeyan N. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
26
41
0
12 Mar 2020
ERASER: A Benchmark to Evaluate Rationalized NLP Models
Jay DeYoung
Sarthak Jain
Nazneen Rajani
Eric P. Lehman
Caiming Xiong
R. Socher
Byron C. Wallace
50
627
0
08 Nov 2019
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,696
0
28 Feb 2017
Previous
1
2
3
4
5
6
7
8