ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.03683
  4. Cited By
A general framework for inference on algorithm-agnostic variable
  importance

A general framework for inference on algorithm-agnostic variable importance

7 April 2020
B. Williamson
P. Gilbert
N. Simon
M. Carone
    FAtt
    CML
ArXivPDFHTML

Papers citing "A general framework for inference on algorithm-agnostic variable importance"

11 / 11 papers shown
Title
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Hué Sullivan
Hurlin Christophe
Pérignon Christophe
Saurin Sébastien
51
0
0
12 Dec 2022
Efficient nonparametric statistical inference on population feature
  importance using Shapley values
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
41
72
0
16 Jun 2020
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
58
622
0
25 Mar 2019
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,873
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Distribution-Free Predictive Inference For Regression
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
402
840
0
14 Apr 2016
Statistical inference for the mean outcome under a possibly non-unique
  optimal treatment strategy
Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy
Alexander Luedtke
M. J. van der Laan
254
222
0
24 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Variable importance in binary regression trees and forests
Variable importance in binary regression trees and forests
H. Ishwaran
193
386
0
15 Nov 2007
1