Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.03683
Cited By
A general framework for inference on algorithm-agnostic variable importance
7 April 2020
B. Williamson
P. Gilbert
N. Simon
M. Carone
FAtt
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A general framework for inference on algorithm-agnostic variable importance"
11 / 11 papers shown
Title
Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring
Hué Sullivan
Hurlin Christophe
Pérignon Christophe
Saurin Sébastien
51
0
0
12 Dec 2022
Efficient nonparametric statistical inference on population feature importance using Shapley values
B. Williamson
Jean Feng
FAtt
41
72
0
16 Jun 2020
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
58
622
0
25 Mar 2019
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
198
3,873
0
10 Apr 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,989
0
04 Mar 2017
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
402
840
0
14 Apr 2016
Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy
Alexander Luedtke
M. J. van der Laan
254
222
0
24 Mar 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Variable importance in binary regression trees and forests
H. Ishwaran
193
386
0
15 Nov 2007
1