Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.03002
Cited By
Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users
6 April 2020
M. Naor
Neil Vexler
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Can Two Walk Together: Privacy Enhancing Methods and Preventing Tracking of Users"
8 / 8 papers shown
Title
Privately detecting changes in unknown distributions
Rachel Cummings
Sara Krehbiel
Yuliia Lut
Wanrong Zhang
OOD
50
11
0
03 Oct 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
199
430
0
29 Nov 2018
Differentially Private Change-Point Detection
Rachel Cummings
Sara Krehbiel
Y. Mei
Rui Tuo
Wanrong Zhang
46
30
0
29 Aug 2018
Local Differential Privacy for Evolving Data
Matthew Joseph
Aaron Roth
Jonathan R. Ullman
Bo Waggoner
88
87
0
20 Feb 2018
Collecting Telemetry Data Privately
Bolin Ding
Janardhan Kulkarni
Sergey Yekhanin
58
689
0
05 Dec 2017
Local, Private, Efficient Protocols for Succinct Histograms
Raef Bassily
Adam D. Smith
FedML
67
458
0
18 Apr 2015
RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response
Ulfar Erlingsson
Vasyl Pihur
Aleksandra Korolova
109
2,001
0
25 Jul 2014
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
137
1,474
0
06 Mar 2008
1