ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.01806
  4. Cited By
On the convergence of physics informed neural networks for linear
  second-order elliptic and parabolic type PDEs

On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs

3 April 2020
Yeonjong Shin
Jérome Darbon
George Karniadakis
    PINN
ArXivPDFHTML

Papers citing "On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs"

18 / 18 papers shown
Title
Label Propagation Training Schemes for Physics-Informed Neural Networks
  and Gaussian Processes
Label Propagation Training Schemes for Physics-Informed Neural Networks and Gaussian Processes
Ming Zhong
Dehao Liu
Raymundo Arroyave
U. Braga-Neto
AI4CE
SSL
26
1
0
08 Apr 2024
Approximation of Solution Operators for High-dimensional PDEs
Approximation of Solution Operators for High-dimensional PDEs
Nathan Gaby
Xiaojing Ye
30
0
0
18 Jan 2024
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based
  Partial Differential Equations Solving
Auxiliary-Tasks Learning for Physics-Informed Neural Network-Based Partial Differential Equations Solving
Junjun Yan
Xinhai Chen
Zhichao Wang
Enqiang Zhou
Jie Liu
PINN
AI4CE
29
1
0
12 Jul 2023
Informed Learning by Wide Neural Networks: Convergence, Generalization
  and Sampling Complexity
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
32
3
0
02 Jul 2022
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Physics-informed neural networks for inverse problems in supersonic
  flows
Physics-informed neural networks for inverse problems in supersonic flows
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
23
201
0
23 Feb 2022
Solving time dependent Fokker-Planck equations via temporal normalizing
  flow
Solving time dependent Fokker-Planck equations via temporal normalizing flow
Xiaodong Feng
Li Zeng
Tao Zhou
AI4CE
36
25
0
28 Dec 2021
Physics informed neural networks for continuum micromechanics
Physics informed neural networks for continuum micromechanics
Alexander Henkes
Henning Wessels
R. Mahnken
PINN
AI4CE
16
139
0
14 Oct 2021
Error analysis for physics informed neural networks (PINNs)
  approximating Kolmogorov PDEs
Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs
Tim De Ryck
Siddhartha Mishra
PINN
21
100
0
28 Jun 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
38
26
0
14 Jun 2021
A Deep Learning approach to Reduced Order Modelling of Parameter
  Dependent Partial Differential Equations
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
26
45
0
10 Mar 2021
Reproducing Activation Function for Deep Learning
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
Hybrid FEM-NN models: Combining artificial neural networks with the
  finite element method
Hybrid FEM-NN models: Combining artificial neural networks with the finite element method
Sebastian K. Mitusch
S. Funke
M. Kuchta
AI4CE
31
93
0
04 Jan 2021
Energy-based error bound of physics-informed neural network solutions in
  elasticity
Energy-based error bound of physics-informed neural network solutions in elasticity
Mengwu Guo
E. Haghighat
PINN
51
28
0
18 Oct 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention
  Mechanism
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
28
444
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
878
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural
  Networks (PINNs) for approximating PDEs
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
25
171
0
29 Jun 2020
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
  Equations using Finite Volume Discretization
DiscretizationNet: A Machine-Learning based solver for Navier-Stokes Equations using Finite Volume Discretization
Rishikesh Ranade
C. Hill
Jay Pathak
AI4CE
54
123
0
17 May 2020
1