ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.01215
  4. Cited By
CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
  Deep Generative Models

CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models

2 April 2020
Vijil Chenthamarakshan
Payel Das
Samuel C. Hoffman
Hendrik Strobelt
Inkit Padhi
Kar Wai Lim
Benjamin Hoover
Matteo Manica
Jannis Born
Teodoro Laino
Aleksandra Mojsilović
ArXivPDFHTML

Papers citing "CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models"

8 / 8 papers shown
Title
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
228
644
0
29 Nov 2018
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
74
324
0
24 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
286
1,358
0
12 Feb 2018
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders
GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
M. Simonovsky
N. Komodakis
GNN
BDL
81
842
0
09 Feb 2018
Application of generative autoencoder in de novo molecular design
Application of generative autoencoder in de novo molecular design
T. Blaschke
Marcus Olivecrona
Ola Engkvist
J. Bajorath
Hongming Chen
AI4CE
80
343
0
21 Nov 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
62
523
0
30 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
92
1,003
0
25 Apr 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
1