Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.01077
Cited By
Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)
2 April 2020
Arturo Marbán
Daniel Becking
Simon Wiedemann
Wojciech Samek
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)"
3 / 3 papers shown
Title
RED++ : Data-Free Pruning of Deep Neural Networks via Input Splitting and Output Merging
Edouard Yvinec
Arnaud Dapogny
Matthieu Cord
Kévin Bailly
28
15
0
30 Sep 2021
FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4bit-Compact Multilayer Perceptrons
Simon Wiedemann
Suhas Shivapakash
P. Wiedemann
Daniel Becking
Wojciech Samek
F. Gerfers
Thomas Wiegand
MQ
23
7
0
17 Dec 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
1