Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.00475
Cited By
Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions
1 April 2020
V. Patel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stopping Criteria for, and Strong Convergence of, Stochastic Gradient Descent on Bottou-Curtis-Nocedal Functions"
8 / 8 papers shown
Title
Dynamic Decoupling of Placid Terminal Attractor-based Gradient Descent Algorithm
Jinwei Zhao
Marco Gori
Alessandro Betti
S. Melacci
Hongtao Zhang
Jiedong Liu
Xinhong Hei
28
0
0
10 Sep 2024
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
37
2
0
20 Nov 2023
A Novel Gradient Methodology with Economical Objective Function Evaluations for Data Science Applications
Christian Varner
Vivak Patel
16
2
0
19 Sep 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
37
5
0
30 Jan 2023
Convergence proof for stochastic gradient descent in the training of deep neural networks with ReLU activation for constant target functions
Martin Hutzenthaler
Arnulf Jentzen
Katharina Pohl
Adrian Riekert
Luca Scarpa
MLT
34
6
0
13 Dec 2021
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
23
50
0
04 May 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
32
13
0
01 Apr 2021
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
1