Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2004.00464
Cited By
Deep transformation models: Tackling complex regression problems with neural network based transformation models
1 April 2020
Beate Sick
Torsten Hothorn
Oliver Durr
MedIm
BDL
OOD
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep transformation models: Tackling complex regression problems with neural network based transformation models"
9 / 9 papers shown
Title
An interpretable neural network-based non-proportional odds model for ordinal regression
Akifumi Okuno
Kazuharu Harada
32
1
0
31 Mar 2023
Deep conditional transformation models for survival analysis
Gabriele Campanella
Lucas Kook
I. Häggström
Torsten Hothorn
Thomas J. Fuchs
21
2
0
20 Oct 2022
Sample-based Uncertainty Quantification with a Single Deterministic Neural Network
T. Kanazawa
Chetan Gupta
UQCV
37
4
0
17 Sep 2022
Deep interpretable ensembles
Lucas Kook
Andrea Götschi
Philipp F. M. Baumann
Torsten Hothorn
Beate Sick
UQCV
35
8
0
25 May 2022
Short-Term Density Forecasting of Low-Voltage Load using Bernstein-Polynomial Normalizing Flows
M. Arpogaus
Marcus Voss
Beate Sick
Mark Nigge-Uricher
Oliver Durr
33
16
0
29 Apr 2022
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
63
13
0
15 Oct 2021
Transformation Models for Flexible Posteriors in Variational Bayes
Sefan Hörtling
Daniel Dold
Oliver Durr
Beate Sick
26
0
0
01 Jun 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
289
9,167
0
06 Jun 2015
1