ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.12172
  4. Cited By
Edge Intelligence: Architectures, Challenges, and Applications

Edge Intelligence: Architectures, Challenges, and Applications

26 March 2020
Dianlei Xu
Tong Li
Yong Li
Xiang Su
Sasu Tarkoma
Tao Jiang
Jon Crowcroft
Pan Hui
ArXivPDFHTML

Papers citing "Edge Intelligence: Architectures, Challenges, and Applications"

7 / 7 papers shown
Title
A communication efficient distributed learning framework for smart
  environments
A communication efficient distributed learning framework for smart environments
Lorenzo Valerio
A. Passarella
M. Conti
30
30
0
27 Sep 2021
Incentive Mechanism Design for Resource Sharing in Collaborative Edge
  Learning
Incentive Mechanism Design for Resource Sharing in Collaborative Edge Learning
Wei Yang Bryan Lim
Jer Shyuan Ng
Zehui Xiong
Dusit Niyato
Cyril Leung
Chunyan Miao
Qiang Yang
FedML
24
25
0
31 May 2020
6G White Paper on Edge Intelligence
6G White Paper on Edge Intelligence
Ella Peltonen
M. Bennis
M. Capobianco
Merouane Debbah
Aaron Yi Ding
...
S. Samarakoon
K. Seppänen
Paweł Sroka
Sasu Tarkoma
Tingting Yang
24
137
0
30 Apr 2020
Analyzing Federated Learning through an Adversarial Lens
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,033
0
29 Nov 2018
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,688
0
14 Apr 2018
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile
  Applications
NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications
Tien-Ju Yang
Andrew G. Howard
Bo Chen
Xiao Zhang
Alec Go
Mark Sandler
Vivienne Sze
Hartwig Adam
90
516
0
09 Apr 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1