ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.11003
  4. Cited By
Learn to Schedule (LEASCH): A Deep reinforcement learning approach for
  radio resource scheduling in the 5G MAC layer

Learn to Schedule (LEASCH): A Deep reinforcement learning approach for radio resource scheduling in the 5G MAC layer

24 March 2020
F. Al-Tam
N. Correia
Jonathan Rodriguez
ArXivPDFHTML

Papers citing "Learn to Schedule (LEASCH): A Deep reinforcement learning approach for radio resource scheduling in the 5G MAC layer"

5 / 5 papers shown
Title
Learning Generalized Wireless MAC Communication Protocols via
  Abstraction
Learning Generalized Wireless MAC Communication Protocols via Abstraction
Luciano Miuccio
Salvatore Riolo
S. Samarakoon
D. Panno
M. Bennis
19
17
0
06 Jun 2022
Deep Reinforcement Model Selection for Communications Resource
  Allocation in On-Site Medical Care
Deep Reinforcement Model Selection for Communications Resource Allocation in On-Site Medical Care
Steffen Gracla
Edgar Beck
C. Bockelmann
Armin Dekorsy
19
1
0
12 Nov 2021
Deep Reinforcement Learning for Wireless Resource Allocation Using
  Buffer State Information
Deep Reinforcement Learning for Wireless Resource Allocation Using Buffer State Information
Eike-Manuel Bansbach
Victor Eliachevitch
Laurent Schmalen
33
4
0
27 Aug 2021
The Emergence of Wireless MAC Protocols with Multi-Agent Reinforcement
  Learning
The Emergence of Wireless MAC Protocols with Multi-Agent Reinforcement Learning
Mateus P. Mota
Álvaro Valcarce
J. Gorce
J. Hoydis
25
39
0
16 Aug 2021
Contention Window Optimization in IEEE 802.11ax Networks with Deep
  Reinforcement Learning
Contention Window Optimization in IEEE 802.11ax Networks with Deep Reinforcement Learning
Witold Wydmański
S. Szott
21
48
0
03 Mar 2020
1