ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.10422
  4. Cited By
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates

A Unified Theory of Decentralized SGD with Changing Topology and Local Updates

23 March 2020
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
    FedML
ArXivPDFHTML

Papers citing "A Unified Theory of Decentralized SGD with Changing Topology and Local Updates"

21 / 71 papers shown
Title
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
152
1,056
0
24 May 2018
D$^2$: Decentralized Training over Decentralized Data
D2^22: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
29
349
0
19 Mar 2018
Communication Compression for Decentralized Training
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
41
272
0
17 Mar 2018
The Power of Interpolation: Understanding the Effectiveness of SGD in
  Modern Over-parametrized Learning
The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning
Siyuan Ma
Raef Bassily
M. Belkin
48
289
0
18 Dec 2017
Network Topology and Communication-Computation Tradeoffs in
  Decentralized Optimization
Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization
A. Nedić
Alexander Olshevsky
Michael G. Rabbat
50
507
0
26 Sep 2017
On the convergence properties of a $K$-step averaging stochastic
  gradient descent algorithm for nonconvex optimization
On the convergence properties of a KKK-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
115
233
0
03 Aug 2017
Clique Gossiping
Clique Gossiping
Yang Liu
Bo Li
Brian D. O. Anderson
Guodong Shi
18
10
0
08 Jun 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
  Study for Decentralized Parallel Stochastic Gradient Descent
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
40
1,221
0
25 May 2017
Optimal algorithms for smooth and strongly convex distributed
  optimization in networks
Optimal algorithms for smooth and strongly convex distributed optimization in networks
Kevin Scaman
Francis R. Bach
Sébastien Bubeck
Y. Lee
Laurent Massoulié
54
326
0
28 Feb 2017
A New Perspective on Randomized Gossip Algorithms
A New Perspective on Randomized Gossip Algorithms
Nicolas Loizou
Peter Richtárik
26
30
0
15 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
96
1,886
0
08 Oct 2016
Optimization Methods for Large-Scale Machine Learning
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
173
3,198
0
15 Jun 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
234
17,328
0
17 Feb 2016
Asynchronous stochastic convex optimization
Asynchronous stochastic convex optimization
John C. Duchi
Sorathan Chaturapruek
Christopher Ré
36
87
0
04 Aug 2015
Communication Complexity of Distributed Convex Learning and Optimization
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
74
207
0
05 Jun 2015
Stochastic Gradient Descent, Weighted Sampling, and the Randomized
  Kaczmarz algorithm
Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm
Deanna Needell
Nathan Srebro
Rachel A. Ward
101
551
0
21 Oct 2013
Asynchronous Distributed Optimization using a Randomized Alternating
  Direction Method of Multipliers
Asynchronous Distributed Optimization using a Randomized Alternating Direction Method of Multipliers
F. Iutzeler
Pascal Bianchi
P. Ciblat
W. Hachem
46
181
0
12 Mar 2013
Distributed optimization over time-varying directed graphs
Distributed optimization over time-varying directed graphs
A. Nedić
Alexander Olshevsky
47
993
0
10 Mar 2013
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
163
260
0
10 Dec 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic
  Optimization
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
101
764
0
26 Sep 2011
Optimal Distributed Online Prediction using Mini-Batches
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
241
683
0
07 Dec 2010
Previous
12