ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.10323
  4. Cited By
Monte Carlo integration of non-differentiable functions on
  $[0,1]^ι$, $ι=1,\dots,d$, using a single determinantal point pattern
  defined on $[0,1]^d$

Monte Carlo integration of non-differentiable functions on [0,1]ι[0,1]^ι[0,1]ι, ι=1,…,dι=1,\dots,dι=1,…,d, using a single determinantal point pattern defined on [0,1]d[0,1]^d[0,1]d

28 February 2020
Jean‐François Coeurjolly
Adrien Mazoyer
P. Amblard
ArXivPDFHTML

Papers citing "Monte Carlo integration of non-differentiable functions on $[0,1]^ι$, $ι=1,\dots,d$, using a single determinantal point pattern defined on $[0,1]^d$"

3 / 3 papers shown
Title
An analysis of Ermakov-Zolotukhin quadrature using kernels
An analysis of Ermakov-Zolotukhin quadrature using kernels
Ayoub Belhadji
26
11
0
03 Sep 2023
Speeding up Monte Carlo Integration: Control Neighbors for Optimal
  Convergence
Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence
Rémi Leluc
Franccois Portier
Johan Segers
Aigerim Zhuman
30
7
0
10 May 2023
On estimating the structure factor of a point process, with applications
  to hyperuniformity
On estimating the structure factor of a point process, with applications to hyperuniformity
D. Hawat
G. Gautier
Rémi Bardenet
R. Lachièze-Rey
43
11
0
16 Mar 2022
1