ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.09555
  4. Cited By
On the limitations of single-step drift and minorization in Markov chain
  convergence analysis

On the limitations of single-step drift and minorization in Markov chain convergence analysis

21 March 2020
Qian Qin
J. Hobert
ArXivPDFHTML

Papers citing "On the limitations of single-step drift and minorization in Markov chain convergence analysis"

4 / 4 papers shown
Title
HMC and underdamped Langevin united in the unadjusted convex smooth case
HMC and underdamped Langevin united in the unadjusted convex smooth case
Nicolai Gouraud
Pierre Le Bris
Adrien Majka
Pierre Monmarché
20
10
0
02 Feb 2022
Dimension free convergence rates for Gibbs samplers for Bayesian linear
  mixed models
Dimension free convergence rates for Gibbs samplers for Bayesian linear mixed models
Z. Jin
J. Hobert
17
4
0
10 Mar 2021
Exact Convergence Rate Analysis of the Independent Metropolis-Hastings
  Algorithms
Exact Convergence Rate Analysis of the Independent Metropolis-Hastings Algorithms
Guanyang Wang
8
8
0
06 Aug 2020
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
77
136
0
01 May 2018
1