Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.09338
Cited By
Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification
20 March 2020
Nikita Dvornik
Cordelia Schmid
Julien Mairal
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification"
8 / 8 papers shown
Title
Out-of-distribution Few-shot Learning For Edge Devices without Model Fine-tuning
Xinyun Zhang
Lanqing Hong
OODD
33
0
0
13 Apr 2023
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
I. Ullah
Dustin Carrión-Ojeda
Sergio Escalera
Isabelle M Guyon
Mike Huisman
F. Mohr
Jan N van Rijn
Haozhe Sun
Joaquin Vanschoren
P. Vu
VLM
22
32
0
16 Feb 2023
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
Dustin Carrión-Ojeda
Hong Chen
Adrian El Baz
Sergio Escalera
Chaoyu Guan
Isabelle M Guyon
I. Ullah
Xin Eric Wang
Wenwu Zhu
VLM
21
6
0
31 Aug 2022
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
L. Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
109
46
0
29 Jan 2021
An Effective Anti-Aliasing Approach for Residual Networks
C. N. Vasconcelos
Hugo Larochelle
Vincent Dumoulin
Nicolas Le Roux
Ross Goroshin
SupR
25
32
0
20 Nov 2020
Scalable Transfer Learning with Expert Models
J. Puigcerver
C. Riquelme
Basil Mustafa
Cédric Renggli
André Susano Pinto
Sylvain Gelly
Daniel Keysers
N. Houlsby
27
62
0
28 Sep 2020
A Universal Representation Transformer Layer for Few-Shot Image Classification
Lu Liu
William L. Hamilton
Guodong Long
Jing Jiang
Hugo Larochelle
ViT
27
125
0
21 Jun 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
1