ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.09338
  4. Cited By
Selecting Relevant Features from a Multi-domain Representation for
  Few-shot Classification

Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification

20 March 2020
Nikita Dvornik
Cordelia Schmid
Julien Mairal
    VLM
ArXivPDFHTML

Papers citing "Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification"

8 / 8 papers shown
Title
Out-of-distribution Few-shot Learning For Edge Devices without Model
  Fine-tuning
Out-of-distribution Few-shot Learning For Edge Devices without Model Fine-tuning
Xinyun Zhang
Lanqing Hong
OODD
33
0
0
13 Apr 2023
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
Meta-Album: Multi-domain Meta-Dataset for Few-Shot Image Classification
I. Ullah
Dustin Carrión-Ojeda
Sergio Escalera
Isabelle M Guyon
Mike Huisman
F. Mohr
Jan N van Rijn
Haozhe Sun
Joaquin Vanschoren
P. Vu
VLM
22
32
0
16 Feb 2023
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
NeurIPS'22 Cross-Domain MetaDL competition: Design and baseline results
Dustin Carrión-Ojeda
Hong Chen
Adrian El Baz
Sergio Escalera
Chaoyu Guan
Isabelle M Guyon
I. Ullah
Xin Eric Wang
Wenwu Zhu
VLM
21
6
0
31 Aug 2022
A linearized framework and a new benchmark for model selection for
  fine-tuning
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
L. Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
109
46
0
29 Jan 2021
An Effective Anti-Aliasing Approach for Residual Networks
An Effective Anti-Aliasing Approach for Residual Networks
C. N. Vasconcelos
Hugo Larochelle
Vincent Dumoulin
Nicolas Le Roux
Ross Goroshin
SupR
25
32
0
20 Nov 2020
Scalable Transfer Learning with Expert Models
Scalable Transfer Learning with Expert Models
J. Puigcerver
C. Riquelme
Basil Mustafa
Cédric Renggli
André Susano Pinto
Sylvain Gelly
Daniel Keysers
N. Houlsby
27
62
0
28 Sep 2020
A Universal Representation Transformer Layer for Few-Shot Image
  Classification
A Universal Representation Transformer Layer for Few-Shot Image Classification
Lu Liu
William L. Hamilton
Guodong Long
Jing Jiang
Hugo Larochelle
ViT
27
125
0
21 Jun 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
1