ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.09338
170
24

Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification

20 March 2020
Nikita Dvornik
Cordelia Schmid
Julien Mairal
    VLM
ArXivPDFHTML
Abstract

Popular approaches for few-shot classification consist of first learning a generic data representation based on a large annotated dataset, before adapting the representation to new classes given only a few labeled samples. In this work, we propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches. First, we obtain a multi-domain representation by training a set of semantically different feature extractors. Then, given a few-shot learning task, we use our multi-domain feature bank to automatically select the most relevant representations. We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training, which leads to state-of-the-art results on MetaDataset and improved accuracy on mini-ImageNet.

View on arXiv
Comments on this paper