ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.08237
  4. Cited By
Fixing the train-test resolution discrepancy: FixEfficientNet

Fixing the train-test resolution discrepancy: FixEfficientNet

18 March 2020
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
    AAML
ArXivPDFHTML

Papers citing "Fixing the train-test resolution discrepancy: FixEfficientNet"

18 / 18 papers shown
Title
KonX: Cross-Resolution Image Quality Assessment
KonX: Cross-Resolution Image Quality Assessment
Oliver Wiedemann
Vlad Hosu
Shaolin Su
Dietmar Saupe
25
10
0
12 Dec 2022
Vision Models Are More Robust And Fair When Pretrained On Uncurated
  Images Without Supervision
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
Priya Goyal
Quentin Duval
Isaac Seessel
Mathilde Caron
Ishan Misra
Levent Sagun
Armand Joulin
Piotr Bojanowski
VLM
SSL
26
110
0
16 Feb 2022
Towards an Analytical Definition of Sufficient Data
Towards an Analytical Definition of Sufficient Data
Adam Byerly
T. Kalganova
17
4
0
07 Feb 2022
Recognition-Aware Learned Image Compression
Recognition-Aware Learned Image Compression
Maxime Kawawa-Beaudan
Ryan Roggenkemper
A. Zakhor
19
5
0
01 Feb 2022
Compute and Energy Consumption Trends in Deep Learning Inference
Compute and Energy Consumption Trends in Deep Learning Inference
Radosvet Desislavov
Fernando Martínez-Plumed
José Hernández Orallo
10
113
0
12 Sep 2021
Explaining Bayesian Neural Networks
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
26
25
0
23 Aug 2021
Revealing the Distributional Vulnerability of Discriminators by Implicit
  Generators
Revealing the Distributional Vulnerability of Discriminators by Implicit Generators
Zhilin Zhao
LongBing Cao
Kun-Yu Lin
18
11
0
23 Aug 2021
Deep Ensembling with No Overhead for either Training or Testing: The
  All-Round Blessings of Dynamic Sparsity
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
OOD
23
49
0
28 Jun 2021
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
Shiwei Liu
Tianlong Chen
Xiaohan Chen
Zahra Atashgahi
Lu Yin
Huanyu Kou
Li Shen
Mykola Pechenizkiy
Zhangyang Wang
D. Mocanu
29
111
0
19 Jun 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
23
986
0
31 Mar 2021
Momentum Residual Neural Networks
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
19
56
0
15 Feb 2021
Grafit: Learning fine-grained image representations with coarse labels
Grafit: Learning fine-grained image representations with coarse labels
Hugo Touvron
Alexandre Sablayrolles
Matthijs Douze
Matthieu Cord
Hervé Jégou
SSL
17
68
0
25 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
41
39,217
0
22 Oct 2020
Representation Learning with Video Deep InfoMax
Representation Learning with Video Deep InfoMax
R. Devon Hjelm
Philip Bachman
SSL
MDE
14
28
0
27 Jul 2020
On Robustness and Transferability of Convolutional Neural Networks
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
8
153
0
16 Jul 2020
ResKD: Residual-Guided Knowledge Distillation
ResKD: Residual-Guided Knowledge Distillation
Xuewei Li
Songyuan Li
Bourahla Omar
Fei Wu
Xi Li
19
47
0
08 Jun 2020
Meta Pseudo Labels
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
248
656
0
23 Mar 2020
Fixing the train-test resolution discrepancy
Fixing the train-test resolution discrepancy
Hugo Touvron
Andrea Vedaldi
Matthijs Douze
Hervé Jégou
21
420
0
14 Jun 2019
1