ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.07186
  4. Cited By
Optimal statistical inference in the presence of systematic
  uncertainties using neural network optimization based on binned Poisson
  likelihoods with nuisance parameters
v1v2v3 (latest)

Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters

16 March 2020
Stefan Wunsch
Simon Jörger
R. Wolf
G. Quast
ArXiv (abs)PDFHTML

Papers citing "Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters"

7 / 7 papers shown
Title
FAIR Universe HiggsML Uncertainty Challenge Competition
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
92
2
0
03 Oct 2024
Designing Observables for Measurements with Deep Learning
Designing Observables for Measurements with Deep Learning
Owen Long
Benjamin Nachman
OOD
100
1
0
12 Oct 2023
Bias and Priors in Machine Learning Calibrations for High Energy Physics
Bias and Priors in Machine Learning Calibrations for High Energy Physics
Rikab Gambhir
Benjamin Nachman
Jesse Thaler
AI4CE
100
8
0
10 May 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
81
117
0
07 Dec 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
110
18
0
16 Sep 2021
A Living Review of Machine Learning for Particle Physics
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELMAI4CE
89
182
0
02 Feb 2021
Dealing with Nuisance Parameters using Machine Learning in High Energy
  Physics: a Review
Dealing with Nuisance Parameters using Machine Learning in High Energy Physics: a Review
T. Dorigo
P. D. Castro
62
14
0
17 Jul 2020
1