Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.07132
Cited By
GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions
16 March 2020
Zebin Yang
Aijun Zhang
Agus Sudjianto
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions"
20 / 20 papers shown
Title
Predicting Census Survey Response Rates With Parsimonious Additive Models and Structured Interactions
Shibal Ibrahim
P. Radchenko
E. Ben-David
Rahul Mazumder
190
2
0
24 Aug 2021
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
85
77
0
11 Jun 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
54
412
0
29 Apr 2020
Purifying Interaction Effects with the Functional ANOVA: An Efficient Algorithm for Recovering Identifiable Additive Models
Benjamin J. Lengerich
S. Tan
C. Chang
Giles Hooker
R. Caruana
39
40
0
12 Nov 2019
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
83
486
0
19 Sep 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
120
1,428
0
14 Jan 2019
Enhancing Explainability of Neural Networks through Architecture Constraints
Zebin Yang
Aijun Zhang
Agus Sudjianto
AAML
25
87
0
12 Jan 2019
Techniques for Interpretable Machine Learning
Mengnan Du
Ninghao Liu
Xia Hu
FaML
63
1,084
0
31 Jul 2018
Explainable Neural Networks based on Additive Index Models
J. Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
V. Nair
32
106
0
05 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
70
1,849
0
31 May 2018
Adversarial Examples: Attacks and Defenses for Deep Learning
Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
SILM
AAML
59
1,614
0
19 Dec 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
97
2,311
0
24 Oct 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
452
21,459
0
22 May 2017
Detecting Statistical Interactions from Neural Network Weights
Michael Tsang
Dehua Cheng
Yan Liu
47
192
0
14 May 2017
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
519
16,765
0
16 Feb 2016
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
99
1,189
0
21 Sep 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
736
149,474
0
22 Dec 2014
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
107
1,830
0
20 Dec 2013
A lasso for hierarchical interactions
Jacob Bien
Jonathan E. Taylor
Robert Tibshirani
126
484
0
22 May 2012
Sparse Additive Models
Pradeep Ravikumar
John D. Lafferty
Han Liu
Larry A. Wasserman
261
571
0
28 Nov 2007
1