ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.06959
  4. Cited By
PFPN: Continuous Control of Physically Simulated Characters using
  Particle Filtering Policy Network

PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network

16 March 2020
Pei Xu
Ioannis Karamouzas
ArXivPDFHTML

Papers citing "PFPN: Continuous Control of Physically Simulated Characters using Particle Filtering Policy Network"

3 / 3 papers shown
Title
Discovering Diverse Athletic Jumping Strategies
Discovering Diverse Athletic Jumping Strategies
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
40
46
0
02 May 2021
DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
  Character Skills
DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
Xue Bin Peng
Pieter Abbeel
Sergey Levine
M. van de Panne
AI4CE
177
494
0
08 Apr 2018
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
143
928
0
07 Jul 2017
1