ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.05669
  4. Cited By
ARAE: Adversarially Robust Training of Autoencoders Improves Novelty
  Detection

ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection

12 March 2020
Mohammadreza Salehi
Atrin Arya
Barbod Pajoum
Mohammad Otoofi
Amirreza Shaeiri
M. Rohban
Hamid R. Rabiee
    AAML
ArXivPDFHTML

Papers citing "ARAE: Adversarially Robust Training of Autoencoders Improves Novelty Detection"

4 / 4 papers shown
Title
Managing the unknown: a survey on Open Set Recognition and tangential
  areas
Managing the unknown: a survey on Open Set Recognition and tangential areas
Marcos Barcina-Blanco
J. Lobo
Pablo Garcia-Bringas
Javier Del Ser
VLM
27
2
0
14 Dec 2023
GRAM: An Interpretable Approach for Graph Anomaly Detection using
  Gradient Attention Maps
GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps
Yifei Yang
Peng Wang
Xiaofan He
Dongmian Zou
14
5
0
10 Nov 2023
Hierarchical Semi-Supervised Contrastive Learning for
  Contamination-Resistant Anomaly Detection
Hierarchical Semi-Supervised Contrastive Learning for Contamination-Resistant Anomaly Detection
Gaoang Wang
Yibing Zhan
Xinchao Wang
Min-Gyoo Song
K. Nahrstedt
24
11
0
24 Jul 2022
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Data Invariants to Understand Unsupervised Out-of-Distribution Detection
Lars Doorenbos
Raphael Sznitman
Pablo Márquez-Neila
OODD
21
6
0
26 Nov 2021
1