ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03950
  4. Cited By
Manifold lifting: scaling MCMC to the vanishing noise regime

Manifold lifting: scaling MCMC to the vanishing noise regime

9 March 2020
K. Au
Matthew M. Graham
Alexandre Hoang Thiery
ArXivPDFHTML

Papers citing "Manifold lifting: scaling MCMC to the vanishing noise regime"

4 / 4 papers shown
Title
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
Robust random walk-like Metropolis-Hastings algorithms for concentrating
  posteriors
Robust random walk-like Metropolis-Hastings algorithms for concentrating posteriors
Daniel Rudolf
Björn Sprungk
14
6
0
24 Feb 2022
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale
  distributions
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions
Chirag Modi
A. Barnett
Bob Carpenter
36
14
0
01 Oct 2021
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
41
35
0
24 Feb 2020
1