ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03485
  4. Cited By
Neural Operator: Graph Kernel Network for Partial Differential Equations

Neural Operator: Graph Kernel Network for Partial Differential Equations

7 March 2020
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
ArXivPDFHTML

Papers citing "Neural Operator: Graph Kernel Network for Partial Differential Equations"

50 / 160 papers shown
Title
Neural Network Approximations of PDEs Beyond Linearity: A
  Representational Perspective
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
Modular Flows: Differential Molecular Generation
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
34
14
0
12 Oct 2022
A composable machine-learning approach for steady-state simulations on
  high-resolution grids
A composable machine-learning approach for steady-state simulations on high-resolution grids
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
36
8
0
11 Oct 2022
MAgNet: Mesh Agnostic Neural PDE Solver
MAgNet: Mesh Agnostic Neural PDE Solver
Oussama Boussif
D. Assouline
L. Benabbou
Yoshua Bengio
AI4CE
108
29
0
11 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with
  Discontinuities
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
64
24
0
03 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
120
0
30 Sep 2022
Variationally Mimetic Operator Networks
Variationally Mimetic Operator Networks
Dhruv V. Patel
Deep Ray
M. Abdelmalik
T. Hughes
Assad A. Oberai
60
23
0
26 Sep 2022
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric
  Photonic Device Simulation
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
Jiaqi Gu
Zhengqi Gao
Chenghao Feng
Hanqing Zhu
Ray T. Chen
Duane S. Boning
David Z. Pan
32
17
0
19 Sep 2022
Multi-fidelity wavelet neural operator with application to uncertainty
  quantification
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
38
12
0
11 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for
  Parametric PDEs
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
21
9
0
02 Aug 2022
Fourier Neural Operator with Learned Deformations for PDEs on General
  Geometries
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
122
256
0
11 Jul 2022
An extensible Benchmarking Graph-Mesh dataset for studying Steady-State
  Incompressible Navier-Stokes Equations
An extensible Benchmarking Graph-Mesh dataset for studying Steady-State Incompressible Navier-Stokes Equations
F. Bonnet
Jocelyn Ahmed Mazari
T. Munzer
P. Yser
Patrick Gallinari
AI4CE
68
10
0
29 Jun 2022
Multi-scale Physical Representations for Approximating PDE Solutions
  with Graph Neural Operators
Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators
Léon Migus
Yuan Yin
Jocelyn Ahmed Mazari
Patrick Gallinari
AI4CE
23
4
0
29 Jun 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
45
22
0
10 Jun 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
31
68
0
07 Jun 2022
Approximation of Functionals by Neural Network without Curse of
  Dimensionality
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
39
6
0
28 May 2022
Transformer for Partial Differential Equations' Operator Learning
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
47
145
0
26 May 2022
Variable-Input Deep Operator Networks
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
53
23
0
23 May 2022
Generic bounds on the approximation error for physics-informed (and)
  operator learning
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
63
59
0
23 May 2022
Automated differential equation solver based on the parametric
  approximation optimization
Automated differential equation solver based on the parametric approximation optimization
A. Hvatov
Tatiana Tikhonova
24
4
0
11 May 2022
Wavelet neural operator: a neural operator for parametric partial
  differential equations
Wavelet neural operator: a neural operator for parametric partial differential equations
Tapas Tripura
S. Chakraborty
25
63
0
04 May 2022
Learning Green's functions associated with time-dependent partial
  differential equations
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
31
25
0
27 Apr 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
23
1
0
18 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural
  Networks
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
34
7
0
15 Apr 2022
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using
  DeepONets
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
39
37
0
03 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed
  Machine Learning
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
56
57
0
31 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
40
40
0
06 Mar 2022
MIONet: Learning multiple-input operators via tensor product
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
27
158
0
12 Feb 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric
  Entropy of Smooth Function Classes
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
27
6
0
09 Feb 2022
Accelerating Part-Scale Simulation in Liquid Metal Jet Additive
  Manufacturing via Operator Learning
Accelerating Part-Scale Simulation in Liquid Metal Jet Additive Manufacturing via Operator Learning
S. Taverniers
S. Korneev
Kyle Pietrzyk
M. Behandish
AI4CE
16
1
0
02 Feb 2022
Learning Operators with Coupled Attention
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
32
110
0
04 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional
  Spaces
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
34
36
0
01 Jan 2022
Factorized Fourier Neural Operators
Factorized Fourier Neural Operators
Alasdair Tran
A. Mathews
Lexing Xie
Cheng Soon Ong
AI4CE
34
143
0
27 Nov 2021
Composing Partial Differential Equations with Physics-Aware Neural
  Networks
Composing Partial Differential Equations with Physics-Aware Neural Networks
Matthias Karlbauer
T. Praditia
S. Otte
S. Oladyshkin
Wolfgang Nowak
Martin Volker Butz
AI4CE
40
18
0
23 Nov 2021
Physics-Informed Neural Operator for Learning Partial Differential
  Equations
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
386
0
06 Nov 2021
A composable autoencoder-based iterative algorithm for accelerating
  numerical simulations
A composable autoencoder-based iterative algorithm for accelerating numerical simulations
Rishikesh Ranade
C. Hill
Haiyang He
Amir Maleki
Norman Chang
Jay Pathak
AI4CE
45
5
0
07 Oct 2021
Multiwavelet-based Operator Learning for Differential Equations
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
126
202
0
28 Sep 2021
PCNN: A physics-constrained neural network for multiphase flows
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
27
8
0
18 Sep 2021
U-FNO -- An enhanced Fourier neural operator-based deep-learning model
  for multiphase flow
U-FNO -- An enhanced Fourier neural operator-based deep-learning model for multiphase flow
Gege Wen
Zong-Yi Li
Kamyar Azizzadenesheli
Anima Anandkumar
S. Benson
AI4CE
36
369
0
03 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in
  Physics-Informed Neural Networks
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
29
0
30 Aug 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
26
54
0
27 Aug 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert
  Spaces
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
51
15
0
26 Aug 2021
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
59
442
0
19 Aug 2021
SURFNet: Super-resolution of Turbulent Flows with Transfer Learning
  using Small Datasets
SURFNet: Super-resolution of Turbulent Flows with Transfer Learning using Small Datasets
Octavi Obiols-Sales
Abhinav Vishnu
Nicholas Malaya
Aparna Chandramowlishwaran
AI4CE
37
24
0
17 Aug 2021
Seismic wave propagation and inversion with Neural Operators
Seismic wave propagation and inversion with Neural Operators
Yan Yang
Angela F. Gao
J. Castellanos
Zachary E. Ross
Kamyar Azizzadenesheli
R. Clayton
19
70
0
11 Aug 2021
Learning the structure of wind: A data-driven nonlocal turbulence model
  for the atmospheric boundary layer
Learning the structure of wind: A data-driven nonlocal turbulence model for the atmospheric boundary layer
B. Keith
U. Khristenko
B. Wohlmuth
33
7
0
23 Jul 2021
MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for
  Solving PDEs
MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDEs
Lulu Zhang
Yaoyu Zhang
Tao Luo
Weinan E
Z. Xu
Zheng Ma
AI4CE
27
33
0
08 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
46
65
0
02 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
  Spatiotemporal PDEs
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
51
193
0
26 Jun 2021
Choose a Transformer: Fourier or Galerkin
Choose a Transformer: Fourier or Galerkin
Shuhao Cao
42
227
0
31 May 2021
Previous
1234
Next