Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.03485
Cited By
Neural Operator: Graph Kernel Network for Partial Differential Equations
7 March 2020
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Operator: Graph Kernel Network for Partial Differential Equations"
50 / 160 papers shown
Title
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
34
14
0
12 Oct 2022
A composable machine-learning approach for steady-state simulations on high-resolution grids
Rishikesh Ranade
C. Hill
Lalit Ghule
Jay Pathak
AI4CE
36
8
0
11 Oct 2022
MAgNet: Mesh Agnostic Neural PDE Solver
Oussama Boussif
D. Assouline
L. Benabbou
Yoshua Bengio
AI4CE
108
29
0
11 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
64
24
0
03 Oct 2022
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
Jayesh K. Gupta
Johannes Brandstetter
AI4CE
61
120
0
30 Sep 2022
Variationally Mimetic Operator Networks
Dhruv V. Patel
Deep Ray
M. Abdelmalik
T. Hughes
Assad A. Oberai
60
23
0
26 Sep 2022
NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric Photonic Device Simulation
Jiaqi Gu
Zhengqi Gao
Chenghao Feng
Hanqing Zhu
Ray T. Chen
Duane S. Boning
David Z. Pan
32
17
0
19 Sep 2022
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
38
12
0
11 Aug 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
21
9
0
02 Aug 2022
Fourier Neural Operator with Learned Deformations for PDEs on General Geometries
Zong-Yi Li
Daniel Zhengyu Huang
Burigede Liu
Anima Anandkumar
AI4CE
122
256
0
11 Jul 2022
An extensible Benchmarking Graph-Mesh dataset for studying Steady-State Incompressible Navier-Stokes Equations
F. Bonnet
Jocelyn Ahmed Mazari
T. Munzer
P. Yser
Patrick Gallinari
AI4CE
68
10
0
29 Jun 2022
Multi-scale Physical Representations for Approximating PDE Solutions with Graph Neural Operators
Léon Migus
Yuan Yin
Jocelyn Ahmed Mazari
Patrick Gallinari
AI4CE
23
4
0
29 Jun 2022
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
45
22
0
10 Jun 2022
NOMAD: Nonlinear Manifold Decoders for Operator Learning
Jacob H. Seidman
Georgios Kissas
P. Perdikaris
George J. Pappas
AI4CE
31
68
0
07 Jun 2022
Approximation of Functionals by Neural Network without Curse of Dimensionality
Yahong Yang
Yang Xiang
39
6
0
28 May 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
47
145
0
26 May 2022
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
53
23
0
23 May 2022
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
63
59
0
23 May 2022
Automated differential equation solver based on the parametric approximation optimization
A. Hvatov
Tatiana Tikhonova
24
4
0
11 May 2022
Wavelet neural operator: a neural operator for parametric partial differential equations
Tapas Tripura
S. Chakraborty
25
63
0
04 May 2022
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
31
25
0
27 Apr 2022
STONet: A Neural-Operator-Driven Spatio-temporal Network
Haitao Lin
Guojiang Zhao
Lirong Wu
Stan Z. Li
AI4TS
AI4CE
23
1
0
18 Apr 2022
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
34
7
0
15 Apr 2022
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
39
37
0
03 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
56
57
0
31 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
40
40
0
06 Mar 2022
MIONet: Learning multiple-input operators via tensor product
Pengzhan Jin
Shuai Meng
Lu Lu
27
158
0
12 Feb 2022
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park
Krikamol Muandet
27
6
0
09 Feb 2022
Accelerating Part-Scale Simulation in Liquid Metal Jet Additive Manufacturing via Operator Learning
S. Taverniers
S. Korneev
Kyle Pietrzyk
M. Behandish
AI4CE
16
1
0
02 Feb 2022
Learning Operators with Coupled Attention
Georgios Kissas
Jacob H. Seidman
Leonardo Ferreira Guilhoto
V. Preciado
George J. Pappas
P. Perdikaris
32
110
0
04 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
34
36
0
01 Jan 2022
Factorized Fourier Neural Operators
Alasdair Tran
A. Mathews
Lexing Xie
Cheng Soon Ong
AI4CE
34
143
0
27 Nov 2021
Composing Partial Differential Equations with Physics-Aware Neural Networks
Matthias Karlbauer
T. Praditia
S. Otte
S. Oladyshkin
Wolfgang Nowak
Martin Volker Butz
AI4CE
40
18
0
23 Nov 2021
Physics-Informed Neural Operator for Learning Partial Differential Equations
Zong-Yi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
AI4CE
62
386
0
06 Nov 2021
A composable autoencoder-based iterative algorithm for accelerating numerical simulations
Rishikesh Ranade
C. Hill
Haiyang He
Amir Maleki
Norman Chang
Jay Pathak
AI4CE
45
5
0
07 Oct 2021
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
126
202
0
28 Sep 2021
PCNN: A physics-constrained neural network for multiphase flows
Haoyang Zheng
Ziyang Huang
Guang Lin
PINN
27
8
0
18 Sep 2021
U-FNO -- An enhanced Fourier neural operator-based deep-learning model for multiphase flow
Gege Wen
Zong-Yi Li
Kamyar Azizzadenesheli
Anima Anandkumar
S. Benson
AI4CE
36
369
0
03 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
29
0
30 Aug 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
26
54
0
27 Aug 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
51
15
0
26 Aug 2021
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
59
442
0
19 Aug 2021
SURFNet: Super-resolution of Turbulent Flows with Transfer Learning using Small Datasets
Octavi Obiols-Sales
Abhinav Vishnu
Nicholas Malaya
Aparna Chandramowlishwaran
AI4CE
37
24
0
17 Aug 2021
Seismic wave propagation and inversion with Neural Operators
Yan Yang
Angela F. Gao
J. Castellanos
Zachary E. Ross
Kamyar Azizzadenesheli
R. Clayton
19
70
0
11 Aug 2021
Learning the structure of wind: A data-driven nonlocal turbulence model for the atmospheric boundary layer
B. Keith
U. Khristenko
B. Wohlmuth
33
7
0
23 Jul 2021
MOD-Net: A Machine Learning Approach via Model-Operator-Data Network for Solving PDEs
Lulu Zhang
Yaoyu Zhang
Tao Luo
Weinan E
Z. Xu
Zheng Ma
AI4CE
27
33
0
08 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
46
65
0
02 Jul 2021
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
51
193
0
26 Jun 2021
Choose a Transformer: Fourier or Galerkin
Shuhao Cao
42
227
0
31 May 2021
Previous
1
2
3
4
Next