ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.03021
  4. Cited By
Exploiting Verified Neural Networks via Floating Point Numerical Error

Exploiting Verified Neural Networks via Floating Point Numerical Error

6 March 2020
Kai Jia
Martin Rinard
    AAML
ArXivPDFHTML

Papers citing "Exploiting Verified Neural Networks via Floating Point Numerical Error"

13 / 13 papers shown
Title
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Jianting Yang
Srecko Ðurasinovic
Jean B. Lasserre
Victor Magron
Jun Zhao
AAML
39
1
0
27 May 2024
SysNoise: Exploring and Benchmarking Training-Deployment System
  Inconsistency
SysNoise: Exploring and Benchmarking Training-Deployment System Inconsistency
Yan Wang
Yuhang Li
Ruihao Gong
Aishan Liu
Yanfei Wang
...
Yongqiang Yao
Yunchen Zhang
Tianzi Xiao
F. Yu
Xianglong Liu
AAML
32
0
0
01 Jul 2023
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate
  Convolutional Neural Network Architecture From Truth Tables
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
32
1
0
18 Aug 2022
CheckINN: Wide Range Neural Network Verification in Imandra (Extended)
CheckINN: Wide Range Neural Network Verification in Imandra (Extended)
Remi Desmartin
Grant Passmore
Ekaterina Komendantskaya
M. Daggitt
26
5
0
21 Jul 2022
Neural Network Verification with Proof Production
Neural Network Verification with Proof Production
Omri Isac
Clark W. Barrett
M. Zhang
Guy Katz
AAML
35
20
0
01 Jun 2022
A Mixed Integer Programming Approach for Verifying Properties of
  Binarized Neural Networks
A Mixed Integer Programming Approach for Verifying Properties of Binarized Neural Networks
Christopher Lazarus
Mykel J. Kochenderfer
AAML
25
9
0
11 Mar 2022
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
Can Zhou
R. A. Shaikh
Yiran Li
Amin Farjudian
OOD
33
4
0
01 Mar 2022
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem
  Provers
Vehicle: Interfacing Neural Network Verifiers with Interactive Theorem Provers
M. Daggitt
Wen Kokke
R. Atkey
Luca Arnaboldi
Ekaterina Komendantskaya
21
5
0
10 Feb 2022
Verifying Low-dimensional Input Neural Networks via Input Quantization
Verifying Low-dimensional Input Neural Networks via Input Quantization
Kai Jia
Martin Rinard
AAML
22
13
0
18 Aug 2021
Characterizing and Taming Model Instability Across Edge Devices
Characterizing and Taming Model Instability Across Edge Devices
Eyal Cidon
Evgenya Pergament
Zain Asgar
Asaf Cidon
Sachin Katti
14
7
0
18 Oct 2020
Scaling Polyhedral Neural Network Verification on GPUs
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller
F. Serre
Gagandeep Singh
Markus Püschel
Martin Vechev
AAML
29
56
0
20 Jul 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
1