ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02943
  4. Cited By
A deep learning-facilitated radiomics solution for the prediction of
  lung lesion shrinkage in non-small cell lung cancer trials

A deep learning-facilitated radiomics solution for the prediction of lung lesion shrinkage in non-small cell lung cancer trials

5 March 2020
Antong Chen
Jennifer Saouaf
Bo Zhou
Randolph Crawford
Jianda Yuan
Junshui Ma
R. Baumgartner
Shubing Wang
G. Goldmacher
    MedIm
ArXivPDFHTML

Papers citing "A deep learning-facilitated radiomics solution for the prediction of lung lesion shrinkage in non-small cell lung cancer trials"

1 / 1 papers shown
Title
Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in
  Multiple Anatomical Locations
Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in Multiple Anatomical Locations
Shaoyan Pan
Yiqiao Liu
Sarah Halek
M. Tomaszewski
Shubing Wang
R. Baumgartner
Jianda Yuan
G. Goldmacher
Antong Chen
MedIm
34
1
0
04 Sep 2023
1