Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.02752
Cited By
v1
v2
v3 (latest)
Combating noisy labels by agreement: A joint training method with co-regularization
5 March 2020
Hongxin Wei
Lei Feng
Xiangyu Chen
Bo An
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Combating noisy labels by agreement: A joint training method with co-regularization"
50 / 280 papers shown
Title
Noise-Resistant Deep Metric Learning with Probabilistic Instance Filtering
Chang-rui Liu
Han Yu
Boyang Albert Li
Zhiqi Shen
Zhanning Gao
Peiran Ren
Xuansong Xie
Li-zhen Cui
Chunyan Miao
NoLa
64
0
0
03 Aug 2021
Multimodal Co-learning: Challenges, Applications with Datasets, Recent Advances and Future Directions
Anil Rahate
Rahee Walambe
S. Ramanna
K. Kotecha
105
142
0
29 Jul 2021
Superpixel-guided Iterative Learning from Noisy Labels for Medical Image Segmentation
Shuailin Li
Zhitong Gao
Xuming He
NoLa
71
27
0
21 Jul 2021
Consensual Collaborative Training And Knowledge Distillation Based Facial Expression Recognition Under Noisy Annotations
Darshan Gera
B. S
69
7
0
10 Jul 2021
Adaptive Sample Selection for Robust Learning under Label Noise
Deep Patel
P. Sastry
OOD
NoLa
99
30
0
29 Jun 2021
Bayesian Statistics Guided Label Refurbishment Mechanism: Mitigating Label Noise in Medical Image Classification
Mengdi Gao
Ximeng Feng
Mufeng Geng
Zhe Jiang
Lei Zhu
Xiangxi Meng
Chuanqing Zhou
Qiushi Ren
Yanye Lu
BDL
NoLa
43
6
0
23 Jun 2021
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise
Hongxin Wei
Lue Tao
Renchunzi Xie
Bo An
NoLa
73
86
0
21 Jun 2021
Towards Understanding Deep Learning from Noisy Labels with Small-Loss Criterion
Xian-Jin Gui
Wei Wang
Zhang-Hao Tian
NoLa
70
48
0
17 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
84
32
0
09 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
133
72
0
08 Jun 2021
Sample Selection with Uncertainty of Losses for Learning with Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Biwei Huang
Jun Yu
Gang Niu
Masashi Sugiyama
NoLa
77
113
0
01 Jun 2021
Training Classifiers that are Universally Robust to All Label Noise Levels
Jingyi Xu
Tony Q.S. Quek
Kai Fong Ernest Chong
NoLa
55
2
0
27 May 2021
Faster Meta Update Strategy for Noise-Robust Deep Learning
Youjiang Xu
Linchao Zhu
Lu Jiang
Yi Yang
75
51
0
30 Apr 2021
Boosting Co-teaching with Compression Regularization for Label Noise
Yingyi Chen
Xin Shen
S. Hu
Johan A. K. Suykens
NoLa
83
47
0
28 Apr 2021
A Framework using Contrastive Learning for Classification with Noisy Labels
Madalina Ciortan
R. Dupuis
Thomas Peel
VLM
NoLa
47
12
0
19 Apr 2021
Learning from Noisy Labels for Entity-Centric Information Extraction
Wenxuan Zhou
Muhao Chen
NoLa
66
65
0
17 Apr 2021
Joint Negative and Positive Learning for Noisy Labels
Youngdong Kim
Juseung Yun
Hyounguk Shon
Junmo Kim
NoLa
76
63
0
14 Apr 2021
Divergence Optimization for Noisy Universal Domain Adaptation
Qing Yu
Atsushi Hashimoto
Yoshitaka Ushiku
NoLa
62
27
0
01 Apr 2021
Noise-resistant Deep Metric Learning with Ranking-based Instance Selection
Chang-rui Liu
Han Yu
Boyang Albert Li
Zhiqi Shen
Zhanning Gao
Peiran Ren
Xuansong Xie
Li-zhen Cui
Chunyan Miao
NoLa
80
38
0
30 Mar 2021
Transform consistency for learning with noisy labels
Rumeng Yi
Yaping Huang
NoLa
44
4
0
25 Mar 2021
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Yazhou Yao
Zeren Sun
Chuanyi Zhang
Fumin Shen
Qi Wu
Jian Zhang
Zhenmin Tang
NoLa
106
135
0
24 Mar 2021
Co-matching: Combating Noisy Labels by Augmentation Anchoring
Yangdi Lu
Yang Bo
Wenbo He
NoLa
50
7
0
23 Mar 2021
Detecting Label Noise via Leave-One-Out Cross-Validation
Yu-Hang Tang
Yuanran Zhu
W. A. Jong
48
3
0
21 Mar 2021
Ensemble Learning with Manifold-Based Data Splitting for Noisy Label Correction
Hao-Chiang Shao
Hsin-Chieh Wang
Weng-Tai Su
Chia-Wen Lin
NoLa
47
6
0
13 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
49
3
0
01 Mar 2021
Searching for Robustness: Loss Learning for Noisy Classification Tasks
Boyan Gao
Henry Gouk
Timothy M. Hospedales
OOD
NoLa
78
18
0
27 Feb 2021
Multiplicative Reweighting for Robust Neural Network Optimization
Noga Bar
Tomer Koren
Raja Giryes
OOD
NoLa
81
9
0
24 Feb 2021
Learning Deep Neural Networks under Agnostic Corrupted Supervision
Boyang Liu
Mengying Sun
Ding Wang
P. Tan
Jiayu Zhou
79
5
0
12 Feb 2021
Understanding Instance-Level Label Noise: Disparate Impacts and Treatments
Yang Liu
NoLa
55
35
0
10 Feb 2021
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
99
93
0
10 Feb 2021
Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
Yivan Zhang
Gang Niu
Masashi Sugiyama
NoLa
72
82
0
04 Feb 2021
A Second-Order Approach to Learning with Instance-Dependent Label Noise
Zhaowei Zhu
Tongliang Liu
Yang Liu
NoLa
90
129
0
22 Dec 2020
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
Hongxin Wei
Lei Feng
Rongpin Wang
Bo An
NoLa
73
6
0
09 Dec 2020
Multi-Objective Interpolation Training for Robustness to Label Noise
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
81
117
0
08 Dec 2020
A Survey on Deep Learning with Noisy Labels: How to train your model when you cannot trust on the annotations?
F. Cordeiro
G. Carneiro
NoLa
110
48
0
05 Dec 2020
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection
Tiancai Wang
Tong Yang
Jiale Cao
Xinming Zhang
45
48
0
03 Dec 2020
Robust Federated Learning with Noisy Labels
Seunghan Yang
Hyoungseob Park
Junyoung Byun
Changick Kim
FedML
NoLa
64
80
0
03 Dec 2020
Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels
Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Jiankang Deng
Jiatong Li
Yinian Mao
NoLa
71
11
0
02 Dec 2020
SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning
Zhuowei Wang
Jing Jiang
Bo Han
Lei Feng
Bo An
Gang Niu
Guodong Long
NoLa
79
17
0
02 Dec 2020
RNNP: A Robust Few-Shot Learning Approach
Pratik Mazumder
Pravendra Singh
Vinay P. Namboodiri
NoLa
35
18
0
22 Nov 2020
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
97
163
0
09 Nov 2020
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
Hao Cheng
Zhaowei Zhu
Xingyu Li
Yifei Gong
Xing Sun
Yang Liu
NoLa
83
209
0
05 Oct 2020
Pointwise Binary Classification with Pairwise Confidence Comparisons
Lei Feng
Senlin Shu
Nan Lu
Bo Han
Miao Xu
Gang Niu
Bo An
Masashi Sugiyama
97
23
0
05 Oct 2020
Weak-shot Fine-grained Classification via Similarity Transfer
Junjie Chen
Li Niu
Liu Liu
Liqing Zhang
98
21
0
19 Sep 2020
Provably Consistent Partial-Label Learning
Lei Feng
Jiaqi Lv
Bo Han
Miao Xu
Gang Niu
Xin Geng
Bo An
Masashi Sugiyama
68
150
0
17 Jul 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
136
1,004
0
16 Jul 2020
Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels
Songhua Wu
Xiaobo Xia
Tongliang Liu
Bo Han
Biwei Huang
Nannan Wang
Haifeng Liu
Gang Niu
NoLa
73
53
0
14 Jun 2020
ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks
Xinshao Wang
Yang Hua
Elyor Kodirov
David Clifton
N. Robertson
NoLa
81
61
0
07 May 2020
No Regret Sample Selection with Noisy Labels
H. Song
N. Mitsuo
S. Uchida
D. Suehiro
NoLa
58
5
0
06 Mar 2020
Confidence Scores Make Instance-dependent Label-noise Learning Possible
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
NoLa
132
108
0
11 Jan 2020
Previous
1
2
3
4
5
6
Next