ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02658
  4. Cited By
SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
  Gaussian Process Regression with Derivatives

SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives

5 March 2020
Emmanouil Angelis
Philippe Wenk
Bernhard Schölkopf
Stefan Bauer
Andreas Krause
    BDL
ArXiv (abs)PDFHTML

Papers citing "SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for Gaussian Process Regression with Derivatives"

11 / 11 papers shown
Title
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs
AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs
G. Abbati
Philippe Wenk
Michael A. Osborne
Andreas Krause
Bernhard Schölkopf
Stefan Bauer
DiffM
43
15
0
22 Feb 2019
ODIN: ODE-Informed Regression for Parameter and State Inference in
  Time-Continuous Dynamical Systems
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems
Philippe Wenk
G. Abbati
Michael A. Osborne
Bernhard Schölkopf
Andreas Krause
Stefan Bauer
57
31
0
17 Feb 2019
Scaling Gaussian Process Regression with Derivatives
Scaling Gaussian Process Regression with Derivatives
David Eriksson
Kun Dong
E. Lee
D. Bindel
A. Wilson
GP
56
76
0
29 Oct 2018
On Kernel Derivative Approximation with Random Fourier Features
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
34
13
0
11 Oct 2018
Fast Gaussian Process Based Gradient Matching for Parameter
  Identification in Systems of Nonlinear ODEs
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Philippe Wenk
Alkis Gotovos
Stefan Bauer
Nico S. Gorbach
Andreas Krause
J. M. Buhmann
BDL
57
48
0
12 Apr 2018
Scalable Variational Inference for Dynamical Systems
Scalable Variational Inference for Dynamical Systems
Nico S. Gorbach
Stefan Bauer
J. M. Buhmann
BDL
57
49
0
19 May 2017
Bayesian Optimization with Gradients
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
65
210
0
13 Mar 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
75
202
0
21 Nov 2016
Modeling and interpolation of the ambient magnetic field by Gaussian
  processes
Modeling and interpolation of the ambient magnetic field by Gaussian processes
Arno Solin
Manon Kok
Niklas Wahlström
Thomas B. Schon
Simo Särkkä
31
119
0
15 Sep 2015
Probabilistic Numerics and Uncertainty in Computations
Probabilistic Numerics and Uncertainty in Computations
Philipp Hennig
Michael A. Osborne
Mark Girolami
76
307
0
03 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
86
515
0
03 Mar 2015
1