ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02484
  4. Cited By
Adversarial Vertex Mixup: Toward Better Adversarially Robust
  Generalization

Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization

5 March 2020
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
    AAML
ArXivPDFHTML

Papers citing "Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization"

29 / 29 papers shown
Title
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
Revisiting the Relationship between Adversarial and Clean Training: Why Clean Training Can Make Adversarial Training Better
MingWei Zhou
Xiaobing Pei
AAML
144
0
0
30 Mar 2025
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off
  in Adversarial Training
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
31
2
0
26 Jan 2024
Infinite Class Mixup
Infinite Class Mixup
Thomas Mensink
Pascal Mettes
24
2
0
17 May 2023
Generalist: Decoupling Natural and Robust Generalization
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
46
14
0
24 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
36
34
0
19 Mar 2023
Certified Robust Neural Networks: Generalization and Corruption
  Resistance
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
32
10
0
03 Mar 2023
Delving into the Adversarial Robustness of Federated Learning
Delving into the Adversarial Robustness of Federated Learning
Jie M. Zhang
Bo-wen Li
Chen Chen
Lingjuan Lyu
Shuang Wu
Shouhong Ding
Chao Wu
FedML
35
34
0
19 Feb 2023
Explainability and Robustness of Deep Visual Classification Models
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
Inducing Data Amplification Using Auxiliary Datasets in Adversarial
  Training
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
24
2
0
27 Sep 2022
A Light Recipe to Train Robust Vision Transformers
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
26
68
0
15 Sep 2022
Robust Representation via Dynamic Feature Aggregation
Robust Representation via Dynamic Feature Aggregation
Haozhe Liu
Haoqin Ji
Yuexiang Li
Nanjun He
Haoqian Wu
Feng Liu
Linlin Shen
Yefeng Zheng
AAML
OOD
27
3
0
16 May 2022
A Mask-Based Adversarial Defense Scheme
A Mask-Based Adversarial Defense Scheme
Weizhen Xu
Chenyi Zhang
Fangzhen Zhao
Liangda Fang
AAML
24
3
0
21 Apr 2022
Investigating Top-$k$ White-Box and Transferable Black-box Attack
Investigating Top-kkk White-Box and Transferable Black-box Attack
Chaoning Zhang
Philipp Benz
Adil Karjauv
Jae-Won Cho
Kang Zhang
In So Kweon
31
42
0
30 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
17
47
0
11 Mar 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
77
46
0
20 Feb 2022
Interpolated Joint Space Adversarial Training for Robust and
  Generalizable Defenses
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Regional Adversarial Training for Better Robust Generalization
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
11
6
0
02 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
167
14
0
14 Jul 2021
Survey: Image Mixing and Deleting for Data Augmentation
Survey: Image Mixing and Deleting for Data Augmentation
Humza Naveed
Saeed Anwar
Munawar Hayat
Kashif Javed
Ajmal Mian
30
78
0
13 Jun 2021
Adversarial Robustness under Long-Tailed Distribution
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
18
76
0
06 Apr 2021
Adversarially Optimized Mixup for Robust Classification
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
24
8
0
22 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Towards Domain-Agnostic Contrastive Learning
Towards Domain-Agnostic Contrastive Learning
Vikas Verma
Minh-Thang Luong
Kenji Kawaguchi
Hieu H. Pham
Quoc V. Le
SSL
15
115
0
09 Nov 2020
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1